FILTRO BIOLÓGICO PERCOLADOR DE PEQUENA ALTURA DE MEIO SUPORTE APLICADO AO PÓS-TRATAMENTO DE EFLUENTE DE REATOR UASB

Mauro César Pinto Nascimento

MAURO CÉSAR PINTO NASCIMENTO

FILTRO BIOLÓGICO PERCOLADOR DE PEQUENA ALTURA DE MEIO SUPORTE APLICADO AO PÓS-TRATAMENTO DE EFLUENTE DE REATOR UASB

Dissertação apresentada ao Programa de Pósgraduação em Saneamento, Meio Ambiente e Recursos Hídricos da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Saneamento, Meio Ambiente e Recursos Hídricos.

Área de concentração: Saneamento

Orientador: Prof. Carlos Augusto de Lemos Chernicharo

Belo Horizonte Escola de Engenharia da UFMG 2001

N244f Nascimento, Mauro César Pinto

Filtro biológico percolador de pequena altura de meio suporte aplicado ao pós-tratamento de efluente de reator UASB / Mauro César Pinto Nascimento.--2001.

168 f.: il. graf., tab. + CD-ROM

Orientador: Carlos Augusto de Lemos Chernicharo Dissertação (mestrado) – Universidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental, Departamento de Engenharia Hidráulica e Recursos Hídricos, 2001.

Bibliografia: f. 124 - 128.

1. Saneamento - Teses 2. Águas residuais - Purificação - Tratamento biológico - Teses I. Chernicharo, Carlos Augusto de Lemos II. Univer sidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental III. Universidade Federal de Minas Gerais, Departamento de Engenharia Hidráulica e Recursos Hídricos. IV. Título.

CDU: 628.3(043)

i

"Agindo de forma impessoal, a vida se amplia. O esforço do semelhante e seus triunfos são sentidos e celebrados como se fossem próprios e, por sua vez, os próprios são considerados de todos."

Carlos B. G. Pecotche

DEDICATÓRIA

A minha família pela compreensão e apoio. A Fabiana pelo carinho.

AGRADECIMENTOS

Ao professor Carlos, pela orientação, amizade, paciência e pela contribuição para minha formação pessoal e profissional.

Aos professores e funcionários do DESA e DEHR da Escola de Engenharia da UFMG, pela dedicação e contribuição.

Aos técnicos do laboratório Jussara, Lucy e Norma, pela contribuição nas análises físico-químicas, a Adriana, Roseli, Sérgio e Douglas pela contribuição nas análises microbiológicas e a Dona Chica pela manutenção do laboratório.

A Deneb e Luiz Fernando, pela ajuda na operação das unidades piloto, na manutenção do sistema, coleta das amostras e contribuição nas análises físico-químicas.

A Carmela, doutora do PPGEE, pela contribuição na manutenção da planta piloto, do sistema de automação e principalmente pelo encorajamento, companheirismo e ajuda nos momentos difíceis.

Aos amigos do mestrado que contribuíram de alguma forma para o desenvolvimento desse projeto, em especial Ana Lúcia, Ludmila, Vanilda, Fátima Flores, Célia, Francisco e Ricardo Parma.

A toda equipe do PROSAB: Deneb, Michelle, Marília, Fernanda, Cristiane, América, Luciana, Raquel, Adriana, Patrícia, Ilka, Jacson, Marco Túlio, João Carlos, Paulo, Bruno, Reginaldo, Eduardo, Leonardo, Ana Silvia, Valéria e Gustavo, pelo apoio e prazerosa convivência.

A ENERGIA do Universo que consegue mover o espírito humano e estimular a vontade de observar, procurar e pesquisar o seu meio ambiente e a sua verdadeira existência.

A COPASA, pela manutenção da elevatória de esgotos.

Ao CNPq, pela bolsa de mestrado.

A FINEP, pelo financiamento do programa de pesquisa em saneamento básico - PROSAB.

A FAPEMIG, pelo financiamento do sistema de tratamento de esgotos por processos anaeróbios e aeróbios - STEPAA.

RESUMO

Este trabalho apresenta a avaliação de um sistema de tratamento de esgoto sanitário, em escala piloto, constituído de um reator anaeróbio de manta de lodo (UASB) seguido por um filtro biológico percolador (FBP) com pequena altura de meio suporte. O reator UASB possuía um volume de 400 litros, tendo sido operado em regime hidráulico transiente com um tempo de detenção hidráulica médio de 4 horas. O filtro biológico tinha um volume útil de 60 litros, sendo operado com taxas de aplicação hidráulica e cargas orgânicas volumétricas que variam de 3,4 a 30,6 m³/m².d e 0,3 a 3,9 kgDBO/m³.d, respectivamente. Estas condições operacionais diferentes caracterizaram oito fases de pesquisa. Ambos reatores foram alimentados com esgoto doméstico bombeado diretamente do interceptor do ribeirão Arrudas, em Belo Horizonte - MG.

Os resultados médios de remoção de DQO e de DBO nas diferentes fases operacionais variaram de 74 a 88% e de 80 a 94%, respectivamente. As concentrações médias de DQO no efluente final variaram entre 60 e 120 mg/L, enquanto as concentrações médias de DBO estiveram sistematicamente abaixo de 60 mg/L. As médias globais de SST no efluente final foram mantidas abaixo de 40 mg/L.

O sistema UASB/FB pode se tornar uma alternativa muito promissora para o tratamento de esgoto doméstico no Brasil, uma vez que o sistema pode ser projetado com baixos tempos de detenção hidráulica e elevadas taxas de aplicação hidráulica, resultando em uma instalação compacta e de baixo custo. Além disso, o consumo de energia e os custos operacionais são mínimos.

ABSTRACT

This research presents the evaluation of a pilot system comprised by one UASB reactor followed by one trickling filter (TF) with a small packing bed height. The UASB reactor had a volume of 400 litres, being operated at a transient hydraulic regime with an average hydraulic retention time of 4 hours. The trickling filter had a net volume of 60 litres, being operated at hydraulic and organic loading rates varying from 3.4 to 30.6 m³/m².d and 0.3 to 3.9 kgBOD/m³.d, respectively. These different operational conditions characterized eight research phases. Both reactors were fed with domestic sewage pumped directly from the main interceptor of Belo Horizonte City - Brazil.

After almost 16 months of continuous monitoring, the UASB/TF system produced very good results in terms of COD and BOD removal, and also very low solids concentration in the final effluent. The average results of COD and BOD removal varied from 74 to 88% and from 80 to 94%, respectively. The average COD concentrations in the final effluent ranged from 60 to 120 mg/L while the BOD values stayed systematically below 60 mg/L. The overall averages of SS in the final effluent were kept below 40 mg/L.

The UASB/TF system can become a very promising alternative for the treatment of domestic sewage in Brazil and other developing countries, since the system can be designed at very short hydraulic retention times, resulting in a very compact and low cost treatment unit. Besides, the energy consumption and the labour costs are minimum.

SUMÁRIO

AG	RADECIM	ENTOS	i
RE	SUMO		iii
		SURAS	
		BELAS	
LIS	STA DE ABI	REVIATURAS	xi
1.	INTRODU	UÇÃO	1
•	OBJECTIV	10	2
2.	OBJETIV	O	
3.	REVISÃO) BIBLIOGRÁFICA	4
		ndamentos Básicos da Digestão Anaeróbia	
	3.1.1	Preliminares	
	3.1.2	Fatores Ambientais	5
	3.2 Rea	ator Anaeróbio de Fluxo Ascendente e Manta de Lodo - UASB	9
	3.2.1	Preliminares	9
	3.2.2	Vantagens e Desvantagens dos Sistemas Anaeróbios	11
	3.3 O F	Pós-Tratamento de Efluentes de Reatores UASB	
	3.3.1.	Preliminares	12
	3.3.1.	Alguns Sistemas de Pós-tratamento	13
	3.4 Filt	ros Biológicos Percoladores - FBP	16
	3.4.1	Preliminares	16
	3.4.2	Princípio de Funcionamento	17
	3.4.3	Principais Características	21
	3.4.4	Classificação	27
	3.4.5	Eficiências dos Filtros Biológicos Percoladores	30
4.	MATERI	AL E MÉTODOS	33
т.		Planta Piloto	
		mentação do Sistema	
		nfiguração do Sistema	
	4.3.1	Elevatória de Esgotos	
	4.3.2	Tratamento Preliminar	
	4.3.3	Reator UASB	
	4.3.4	Filtro Biológico Percolador – FBP	
		ndições Operacionais da Planta Piloto	
		onitoramento do Sistema UASB/FBP	
	4.5.1.	Parâmetros físico-químicos	
	4.5.2.	Parâmetros microbiológicos	

4.6	Produção de sólidos no reator UASB e no Filtro Biológico Percolador	
4.6	.1 Cálculo dos coeficientes de produção total de sólidos	55
4.6	.2 Cálculo dos coeficientes de produção de lodo	56
4.7	Balanço de conversão de DQO no reator UASB	57
4.8	Análise dos dados	59
RESU	LTADOS E DISCUSSÃO	60
5.1	Preliminares	
5.2		
5.3		
	,	
	_	
	_	
	,	
5.1	3.3. Balanço de sólidos no reator UASB e Filtro Biológico Percolador	118
CONC	CLUSÃO	121
RECO	OMENDAÇÕES	123
REFE	RÊNCIAS BIBLIOGRÁFICAS	124
ANEV	°09	120
	•	
	•	
	•	
9.9		
9.10		
9.11	Resultados de Teor de metano no Biogás	
	4.6 4.7 4.8 RESU 5.1 5.2 5.3 5.4 5.5 5.6 5.6 5.6 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.1 5.1 CONC RECO REFE ANEX 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10	4.6.1 Cálculo dos coeficientes de produção total de sólidos 4.6.2 Cálculo dos coeficientes de produção de lodo 4.7 Balanço de conversão de DQO no reator UASB

LISTA DE FIGURAS

FIGURA 3.1 -	Representação esquemática de um reator UASB	10
FIGURA 3.2 -	Pirâmide trófica da comunidade de microrganismos formada no biofilme	18
FIGURA 3.3 -	Esquema de funcionamento de um filtro biológico	19
FIGURA 3.4 -	Representação esquemática dos fenômenos básicos de degradação	
	de substratos em biofilmes	
FIGURA 3.5 -	Seção típica de um filtro biológico e seus componentes	
FIGURA 3.6 -	Tipos de meios suportes utilizados em filtros biológicos percoladores	
FIGURA 3.7 -	Modelos de drenos pré-moldados	
FIGURA 3.8 -	Circulação de ar no interior de um filtro biológico percolador	
FIGURA 3.9 -	Esquema do fluxo de ar no interior do filtro biológico percolador	
FIGURA 3.10 -	Fluxograma típico de um filtro biológico de baixa carga	
FIGURA 3.11 -	Configurações típicas de sistemas de filtros biológicos de alta carga	29
FIGURA 4.1 -	Diagrama esquemático da planta STEPAA	22
FIGURA 4.1 -		
	Painel de operação em modo local – Projeto STEPAA, 1997	
FIGURA 4.3 -	Tela de operação da Linha 0, controle do reator UASB	
FIGURA 4.4 -	Tela de operação da Linha 3, controle do filtro biológico	
FIGURA 4.5 -	Tela de aquisição de dados	
FIGURA 4.6 -	Hidrograma típico de vazões	
FIGURA 4.7 -	Redes de esgoto e sub-bacias de contribuição	38
FIGURA 4.8 -	Fluxograma do aparato experimental com o filtro biológico percolador operando	20
FIGURA 4.0	com o decantador interno (base do FBP)	39
FIGURA 4.9 -	Fluxograma do aparato experimental com o filtro biológico percolador operando	4.0
EIGUD A 4 10	com o decantador externo (convencional)	
FIGURA 4.10 -	Sistema de tratamento preliminar	
FIGURA 4.11 -	Reator UASB	
FIGURA 4.12 -	Filtro Biológico com decantador interno (configuração utilizada nas Fases I a IV)	
FIGURA 4.13 -	Filtro Biológico com decantador externo (configuração utilizada nas Fases V a VIII)	
FIGURA 4.14 -	Detalhe do Conjunto de bombas peristálticas e do aparato de amostragem	
FIGURA 4.15 -	Esquema do balanço de conversão de DQO	58
FIGURA 5.1 -	Variação da concentração de DQO ao longo do período operacional	64
FIGURA 5.2 -	Resultados Box-Whisker para a concentração de DQO afluente ao reator UASB	
FIGURA 5.3 -	Resultados Box-Whisker para a concentração de DQO efluente do reator UASB	
FIGURA 5.4 -	Resultados Box-Whisker para a concentração de DQO efluente do FBP	
FIGURA 5.5 -	Variação da concentração média de DQO ao longo das fases operacionais	
FIGURA 5.6 -	Variação das eficiências médias de remoção de DQO ao longo das fases operacionais	
FIGURA 5.7 -	Variação da concentração de DBO ao longo do período operacional	
FIGURA 5.8 -	Resultados Box-Whisker para a concentração de DBO afluente do reator UASB	
FIGURA 5.9 -	Resultados Box-Whisker para a concentração de DBO efluente do reator UASB	
FIGURA 5.10 -	Resultados Box-Whisker para a concentração de DBO efluente do FBP	
FIGURA 5.11 -	Variação da concentração média de DBO ao longo das fases operacionais	
FIGURA 5.12 -	Variação das eficiências médias de remoção de DBO ao longo das fases operacionais	
FIGURA 5.13 -	Remoção de DBO, em função da carga orgânica volumétrica, comparada à curva	
	obtida por meio do modelo do NRC	73
FIGURA 5.14 -	Variação da concentração de SST ao longo do período operacional	
FIGURA 5.15 -	Resultados Box-Whisker para a concentração de SST afluente do reator UASB	
FIGURA 5.16 -	Resultados Box-Whisker para a concentração de SST efluente do reator UASB	
FIGURA 5.17 -	Resultados Box-Whisker para a concentração de SST efluente do FBP	
FIGURA 5.18 -	Variação da concentração média de SST ao longo das fases operacionais	
FIGURA 5.19 -	Correlação entre carga orgânica volumétrica no FBP e concentração de DQO efluente	
FIGURA 5.20 -	Correlação entre carga orgânica volumétrica no FBP e eficiência de remoção de DQO	
FIGURA 5.21 -	Correlação entre carga orgânica volumétrica e concentração de DBO efluente	
FIGURA 5.22 -	Correlação entre carga orgânica volumétrica e eficiência de remoção de DBO	
FIGURA 5.23 -	Correlação entre taxa de aplicação hidráulica e concentração SS efluente	

FIGURA 5.24 -	Freqüência de distribuição dos resultados de DQO (fases II a VI)	84
FIGURA 5.25 -	Frequência de distribuição dos resultados de DBO (fases II a VI)	85
FIGURA 5.26 -	Frequência de distribuição dos resultados de SST (fases II a VI)	
FIGURA 5.27 -	Variação da temperatura ao longo das fases operacionais	
FIGURA 5.28 -	Variação mensal das temperaturas médias	
FIGURA 5.29 -	Variação média da temperatura ao longo do período experimental	
FIGURA 5.30 -	Frequência de distribuição da diferença das temperaturas ambiente e do	
	efluente do FBP	91
FIGURA 5.31 -	Correlação entre temperatura e remoção de DBO para o FBP	94
FIGURA 5.32 -	Correlação entre temperatura e remoção de DQO para o FBP	94
FIGURA 5.33 -	Variação dos resultados de Oxigênio Dissolvido Durante as fases operacionais	
FIGURA 5.34 -	Variação dos resultados de pH	
FIGURA 5.35 -	Variação dos resultados de Alcalinidade	98
FIGURA 5.36 -	Variação dos resultados de ácidos voláteis	98
FIGURA 5.37 -	Variação de NTK durante o período experimental	99
FIGURA 5.38 -	Variação de Nitrato durante o período experimental	
FIGURA 5.39 -	Variação de Fósforo total durante o período experimental	
FIGURA 5.40 -	Variação de Fósforo solúvel durante o período experimental	102
FIGURA 5.41 -	Variação de coliformes totais ao longo do período experimental (fases VI a VIII)	105
FIGURA 5.42 -	Variação de E. coli ao longo do período experimental (fases VI a VIII)	105
FIGURA 5.43 -	Identificação das espécies prevalentes de ovos de helmintos	
FIGURA 5.44 -	Variação da produção de biogás e metano	110
FIGURA 5.45 -	Variação do teor de metano no biogás	
FIGURA 5.46 -	Perfil de sólidos totais no reator UASB	114
FIGURA 5.46 -	Perfil de sólidos totais no reator UASB (continuação)	
FIGURA 5.47 -	Variação da biomassa e relação entre as concentrações de sólidos totais voláteis	
	e sólidos totais dentro do reator UASB	116
FIGURA 5.48 -	Variação da massa de sólidos totais e sólidos totais voláteis	
	(descarte de lodo no fundo do decantador)	116
FIGURA 5.49 -	Variação da massa de sólidos totais e sólidos totais voláteis	
	(descarte do sobrenadante do decantador)	
FIGURA 5.50 -	Esquema do balanço de sólidos no reator UASB e FBP	118

LISTA DE TABELAS

TABELA 3.1 -	Condições ambientais que influenciam na digestão anaeróbia	5		
TABELA 3.2 -	Composição química das bactérias metanogênicas			
TABELA 3.3 -	Vantagens e desvantagens dos sistemas anaeróbios			
TABELA 3.4 -	Padrões de lançamento de efluentes nas coleções de corpos d' água			
TABELA 3.5 -	Descrição sucinta de processos de pós-tratamento de efluentes de reatores anaeróbios			
TABELA 3.6 -	Taxas de dosagens típicas aplicadas em filtros biológicos percoladores			
TABELA 3.7 -	Características de alguns meios suportes			
TABELA 3.8 -	Principais características operacionais dos filtros biológicos percoladores	28		
TABELA 3.9 -	Vantagens e desvantagens dos filtros biológicos percoladores	30		
TABELA 4.1 -	Características das unidades que compõem o tratamento preliminar			
TABELA 4.2 -	Características principais do reator UASB piloto			
TABELA 4.3 -	Características principais do Filtro Biológico Percolador piloto			
TABELA 4.4 -	Características intrínsecas da escória de alto forno			
TABELA 4.5 -	Principais características operacionais do Filtro Biológico Percolador	49		
TABELA 4.6 -	Regime hidráulico e período operacional em cada fase da pesquisa	50		
TABELA 4.7 -	Métodos utilizados para a realização das análises	53		
TABELA 4.8 -	Programa de monitoramento do sistema UASB/FBP	54		
TABELA 5.1 -	Resumo das fases com seu respectivo período operacional	60		
TABELA 5.2 -	Resumo dos parâmetros físico-químicos e resultados estatísticos básicos durante			
	o período operacional	61		
TABELA 5.3 -	Resumo das eficiências médias obtidas para cada fase operacional em termos de DQO e DBO	63		
TABELA 5.4 -	Comparação entre a frequência de distribuição de DQO e o atendimento ao padrão			
	de lançamento do Estado de Minas Gerais	84		
TABELA 5.5 -	Comparação entre a freqüência de distribuição de DBO e o atendimento ao padrão de lançamento do Estado de Minas Gerais	85		
TABELA 5.6 -	Comparação entre a frequência de distribuição de SST e o atendimento ao padrão			
	de lançamento do Estado de Minas Gerais	87		
TABELA 5.7 -	Resultados médios de temperatura obtidos para cada fase operacional			
TABELA 5.8 -	Resultados de oxigênio dissolvido no efluente do FBP e dados estatísticos básicos,			
	obtidos durante as fases operacionais	95		
TABELA 5.9 -	Relação DBO:N:P aplicada ao reator UASB durante as fases operacionais	102		
TABELA 5.10 -	Relação DBO:N:P aplicada ao filtro biológico durante as fases operacionais	103		
TABELA 5.11 -	Resumo dos resultados médios dos parâmetros microbiológicos	104		
TABELA 5.12 -	Resumo das eficiências médias obtidas para coliformes totais, Escherichia coli e			
	ovos de helmintos	104		
TABELA 5.13 -	Balanço da produção média de metano e lodo em termos de DQO no reator UASB			
TABELA 5.14 -	Balanço de massas no sistema UASB/FBP			
TABELA 5.15 -	Coeficiente de produção de lodo no reator UASB, em termos de ST e STV			
TABELA 5.16 -	ABELA 5.16 - Coeficiente de produção de lodo no decantador do FBP, em termos de ST e STV			

ABREVIATURAS

DBO Demanda Bioquímica de Oxigênio (mg/L)

DBOf Demanda Bioquímica de Oxigênio filtrada (mg/L)

DQO Demanda Química de Oxigênio (mg/L)

DQOf Demanda Química de Oxigênio filtrada (mg/L)

SST Sólidos Suspensos Totais (mg/L) SSV Sólidos Suspensos Voláteis (mg/L)

ST Sólidos Totais (mg/L)

STV Sólidos Totais Voláteis (mg/L) pH Potencial Hidrogeniônico

NTK Nitrogênio Total Kjeldahl (mg/L)

P Fósforo (mg/L)

Máx Máximo Mín Mínimo Méd Média

DP Desvio padrão

CV Coeficiente de variação

n Número de dados

θh Tempo de Detenção Hidráulica (h)

e.p. Equivalente populacional

CONAMA Conselho Nacional de Meio Ambiente

COPAM Conselho de Política Ambiental de Minas Gerais

FEAM Fundação Estadual de Meio Ambiente

Introdução 1

1. INTRODUÇÃO

Nos últimos anos, os <u>sistemas anaeróbios</u> de tratamento de esgotos, notadamente os reatores de manta de lodo (UASB), cresceram em maturidade, passando a ocupar uma posição de destaque, não só em nível mundial, mas principalmente em nosso país, face às nossas favoráveis condições ambientais de temperatura. No que pesem as grandes vantagens dos sistemas anaeróbios, os mesmos têm dificuldades em produzir efluentes que se adeqüem aos padrões ambientais de lançamento.

Torna-se de grande importância, portanto, o desenvolvimento de pesquisas que tratem conjuntamente a questão do *tratamento anaeróbio* e do *pós-tratamento* dos efluentes desses sistemas, como uma forma de otimizar/sistematizar os parâmetros de dimensionamento de reatores de manta de lodo, e também de sistemas de póstratamento, visando uma maior difusão dessas tecnologias simplificadas e a adequação do efluente tratado aos requisitos da legislação ambiental. Em consonância com o conceito básico dos reatores anaeróbios, é interessante que também as unidades de póstratamento sejam simples e de baixo custo.

Nesse sentido, varias pesquisas estão sendo desenvolvidas com diversas modalidades de pós-tratamento para o efluente de reatores UASB, incluindo-se os filtros biológicos percoladores.

Os <u>filtros biológicos percoladores</u>, apesar do seu grande potencial e elenco de vantagens, têm sido pouco utilizados em nosso país. Talvez a principal razão para tal

Introdução 2

seja a pouca difusão da tecnologia em nosso meio. É de grande importância, portanto, que se aumente e se dissemine o nível de conhecimento sobre esses sistemas, como forma de viabilização da sua maior utilização.

Os filtros biológicos percoladores são, sabidamente, sistemas de tratamento de esgotos que podem encontrar uma elevada aplicabilidade no Brasil, tendo em vista, principalmente, a sua simplicidade e baixo custo operacional. No tocante à utilização de filtros biológicos percoladores para o pós-tratamento de efluentes de reatores anaeróbios, tem-se poucas informações de concepções de sistemas de tratamento que considerem esse tipo de combinação, restritas a poucas unidades em operação no Estado do Paraná.

Pelas enormes vantagens que essa modalidade de pós-tratamento pode vir a apresentar, relativas principalmente à simplicidade operacional e custos, torna-se importante o desenvolvimento de pesquisas que possam aumentar o conhecimento sobre essa alternativa de pós-tratamento e possibilitar a sua maior utilização.

Objetivos 3

2. OBJETIVOS

O presente estudo tem como objetivo principal a avaliação da aplicabilidade dos filtros biológicos Percoladores como unidades de pós-tratamento de efluentes de reatores anaeróbios de fluxo ascendente e manta de lodo - UASB, tratando esgoto sanitário.

Objetivos Específicos

- Avaliar a eficiência do sistema na remoção de matéria orgânica e nutrientes.
- Avaliar a influência da taxa de aplicação superficial e da carga orgânica volumétrica no desempenho do filtro biológico percolador.
- Determinar a taxa de produção de sólidos no sistema.
- Testar uma nova configuração de decantador, localizado na base do filtro biológico percolador.
- Estabelecer correlações entre a qualidade do efluente final e as taxas de aplicação superficiais e cargas orgânicas volumétricas.

3. REVISÃO BIBLIOGRÁFICA

3.1 Fundamentos Básicos da Digestão Anaeróbia

3.1.1 Preliminares

A digestão anaeróbia é um processo natural no qual as bactérias facultativas e estritamente anaeróbias produzem metano (CH₄) e gás carbônico (CO₂), a partir da degradação de compostos orgânicos complexos. No processo de digestão de esgotos domésticos, as proporções típicas de metano e dióxido de carbono no biogás variam de 70 a 80% de CH₄ e 20 a 30% de CO₂ (CETEC, 1982; CHERNICHARO, 1997). O metano produzido, devido à sua baixa solubilidade em água, é liberado em sua grande parte para a fase gasosa, embora possa haver perdas de metano no efluente. Já o dióxido de carbono, por apresentar uma maior solubilidade em água é liberado em parte pela fase gasosa e também dissolvido no efluente líquido. A proporção de CO₂ no efluente depende de outros fatores ambientais, como pH, temperatura e pressão parcial do meio.

A decomposição dos materiais orgânicos é bastante complexa, envolvendo uma diversidade de microrganismos facultativos e anaeróbios, num ambiente delicadamente balanceado, onde cada microrganismo tem uma função essencial. Vários microrganismos fazem parte desse sistema, sendo as bactérias as principais responsáveis pelo processo da digestão anaeróbia. Essas bactérias são muito sensíveis a mudanças ambientais como temperatura, pH e presença de substâncias tóxicas no meio.

3.1.2 Fatores Ambientais

De uma maneira em geral, para se obter uma boa eficiência nos processos anaeróbios, há necessidade de um equilíbrio do sistema ecológico. Tanto as características físicas, quanto as químicas, influenciam o crescimento bacteriano. Fatores físicos, em geral, atuam como agentes seletivos, enquanto que os fatores químicos podem ou não ser seletivos. Alguns elementos como o carbono e o nitrogênio, que são requeridos em quantidades relativamente grandes, podem ser importantes na seleção das espécies. Micronutrientes, os quais são requeridos em quantidades pequenas, geralmente exercem pouca ou nenhuma influência seletiva (CHERNICHARO, 1997). A TAB. 3.1 indica algumas condições ambientais que influenciam na digestão anaeróbia.

TABELA 3.1 - Condições ambientais que influenciam na digestão anaeróbia

Parâmetros	Faixa de variação
Temperatura	
Classe psicrófila	0 a 20 °C
Classe mesófila	20 a 45 °C
Classe termófila	45 a 70 °C
pН	
bactérias acidogênicas	5,0 a 6,0
bactérias metanogênicas	6,8 a 7,5
Nutrientes	
Nitrogênio	2,72 mg/g DBO
Fósforo	0,45 mg/g DBO

Fonte: adaptado de DALTRO FILHO (1992), LETTINGA et al (1996) e SOUZA (1998)

Temperatura

Segundo CHERNICHARO (1990), a temperatura é um dos fatores ambientais mais importantes e afeta consideravelmente o processo de digestão anaeróbia. A temperatura afeta os processos biológicos influenciando as taxas de reações enzimáticas e as taxas de difusão de substrato, além de influenciar no grau de dissociação de diversos compostos e na termodinâmica de diversas reações, ocasionando variações em certos parâmetros como pH, alcalinidade, ácidos voláteis, produção de biogás, dentre outros.

Os valores ótimos de temperatura variam para condições mesofilicas entre 29 e 38 °C e para condições termofilicas entre 49 e 57 °C (McCARTY, 1964a).

Para o tratamento de esgotos domésticos, a região mesofilica apresenta-se como a mais importante, uma vez que o esgoto doméstico, em condições normais, não apresenta temperaturas acima de 45 °C (FREIRE, 1999). MACHADO (1997), citado por (FREIRE, 1999), tratando esgotos domésticos com um reator UASB à temperatura ambiente, observou temperaturas mínima de 18 °C e máxima de 26 °C, indicando que o reator não foi operado dentro da faixa ótima. Contudo, não foi constatada interferência da temperatura no desempenho do reator. Estudos realizados por NOZHEVNICOVA *et al.* (2000), em lodo de esgotos à temperatura entre 5 a 25 °C, constataram atividade de degradação de substrato com produção de metano a temperaturas de 5 a 6 °C. ELMITWALLI *at al.* (2000) obtiveram eficiências de remoção de DQO da ordem de 70% operando um filtro anaeróbio com tempo de detenção hidráulica (θh) entre 4 e 8 h a temperatura de 13 °C.

Isto posto, tem-se que os processos anaeróbios se tornam amplamente vantajosos se utilizados em regiões de clima quente, principalmente se não ocorrer grandes variações de temperaturas e se as temperaturas elevadas predominarem ao longo do ano.

pH, Alcalinidade e Ácidos Voláteis

A interligação do pH, da alcalinidade e dos ácidos voláteis faz com que esses parâmetros sejam importantes no processo de digestão anaeróbia. O controle do pH é importante para evitar uma possível inibição das bactérias metanogênicas. As bactérias

metanogênicas têm uma taxa de crescimento ótimo na faixa de pH entre 6,8 e 7,5. A taxa de metanogênese diminui rapidamente quando os valores de pH são inferiores a 6,3 ou superiores a 7,8 (VAN HAANDEL & LETTINGA, 1994).

A interação entre a alcalinidade e os ácidos voláteis durante a digestão anaeróbia está ligada à capacidade da alcalinidade neutralizar os ácidos formados no processo, tamponando o pH caso ocorra uma grande produção de ácidos voláteis durante a acidogênese. A alcalinidade e os ácidos voláteis derivam principalmente da decomposição de compostos orgânicos durante a digestão anaeróbia. A digestão microbiana de substratos complexos produz os ácidos voláteis e a digestão dos compostos protéicos e aminoácidos transforma o nitrogênio em amônia, que combinada com o ácido carbônico em solução leva à formação do bicarbonato de amônia (CHERNICHARO, 1997).

Requisito Nutricional

As necessidades nutricionais dos microrganismos podem ser estabelecidas através da composição química de sua própria célula. Como a composição química é dificilmente conhecida, os requisitos de nutrientes são determinados com base na composição empírica das células microbianas, admitindo-se que quase todas as células vivas são formadas por composições químicas similares. Desse modo, o requisito nutricional de uma determinada célula é relativamente proporcional aos tipos de compostos que a mesma célula apresenta em sua composição. A TAB. 3.2 apresenta a composição química das bactérias metanogênicas.

TABELA 3.2 - Composição química das bactérias metanogênicas

	Macronutrientes	Micronutrientes		
Elemento	Concentração (g/kg SSV)	Elemento	Concentração (mg/kg SSV)	
Nitrogênio	65	Ferro	1800	
Fósforo	15	Níquel	100	
Potássio	10	Cobalto	75	
Enxofre	10	Molibidênio	60	
Cálcio	4	Zinco	60	
Magnésio	3	Manganês	20	
		Cobre	10	

Fonte: adaptado de LETTINGA et al (1996)

A TAB. 3.2 mostra que a composição química das células requer maiores concentrações de nitrogênio e fósforo para a sua formação. De acordo com LETTINGA *et al.* (1996), as seguintes relações podem ser utilizadas para esgoto doméstico:

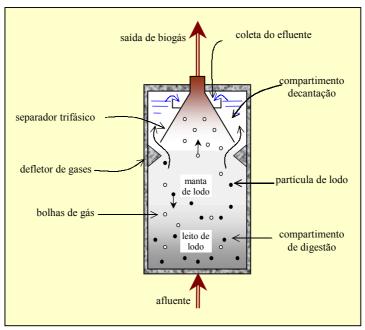
Biomassa com baixo crescimento de produção celular (Y ≈ 0,05 gSSV/gDQO)
 Degradação de ácidos graxos voláteis

DQO: N:
$$P = 1000:5:1$$
 ou $C: N: P = 330:5:1$

Biomassa com alto crescimento de produção celular (Y ≈ 0,15 gSSV/gDQO)
 Degradação de carboidratos

DQO:
$$N: P = 350: 5: 1$$
 ou $C: N: P = 130: 5: 1$

Os esgotos domésticos normalmente possuem todos os nutrientes em concentrações adequadas para os sistemas biológicos de tratamento. Ao contrário, em certos despejos industriais pode haver falta de determinado nutriente, necessitando geralmente de uma complementação para uma boa eficiência do processo (VON SPERLING, 1997).


3.2 Reator Anaeróbio de Fluxo Ascendente e Manta de Lodo - UASB

3.2.1 Preliminares

O reator anaeróbio de fluxo ascendente e manta de lodo, tradução para o português de Upflow Anaerobic Sludge Blanket Reactor (UASB), foi desenvolvido pelo prof. Gatze Lettinga e sua equipe na Universidade de Wageningen – Holanda, na década de 70 (VAN HAANDEL & LETTINGA, 1994). É um sistema de alta taxa que tem sido amplamente utilizado para tratamento anaeróbio de esgotos, mostrando excelente desempenho principalmente em regiões de climas tropical e subtropical.

O reator UASB consiste em um processo de tratamento de alta taxa, com capacidade de reter grandes quantidades de biomassa no sistema. A biomassa tem um crescimento disperso no meio líquido e apresenta elevada capacidade de absorção de substrato. Normalmente o lodo se apresenta na forma de grânulos, com diâmetros médios variando de 1 a 5 mm (CHERNICHARO, 1997; SEGHEZZO, 2000). OLIVIA & ROBERTO (1996) observaram a formação de grânulos com dimensões entre 0,6 a 0,9 mm de largura e 0,7 a 1,2 mm de comprimento. A concentração de lodo dentro do reator varia ao longo da altura, distinguindo-se duas regiões: o leito de lodo, localizado próximo ao fundo, caracterizado por possuir lodo muito denso e com partículas granulares de elevada capacidade de sedimentação; e a manta de lodo, localizada próxima ao topo do reator, caracterizada por um lodo mais disperso e leve. Estudos realizados por CALLADO & FORESTI (1997) indicam que a maior parte da matéria orgânica é convertida pelo lodo presente no fundo do reator.

O fluxo do liquido é ascendente e, à medida que passa pelo reator, a matéria orgânica entra em contato com a biomassa ativa no leito de lodo, ocorrendo a digestão anaeróbia, com produção de biogás. No topo do reator localiza-se o separador trifásico, mecanismo físico que permite a separação de gases, sólidos e líquidos. A separação ocorre na zona de sedimentação e coleta de gases. O coletor de gases possui defletores que direcionam o fluxo de gases e evitam perturbações na zona de sedimentação. A zona de sedimentação permite a saída do efluente clarificado e o retorno dos sólidos para o reator, mantendo assim uma maior concentração de sólidos dentro do sistema. A FIG. 3.1 representa o esquema de um reator UASB.

FIGURA 3.1 - Representação esquemática de um reator UASB.

Fonte: adaptado de CAMPOS (1998)

Os reatores UASB apresentam elevados tempos de retenção celular, apesar do reduzido tempo de detenção hidráulica. A permanência dos sólidos dentro do reator por um longo período de tempo permite o crescimento de uma biomassa de microrganismos formadores de metano, favorecendo a conversão da matéria orgânica em metano e uma

maior estabilização do lodo excedente descartado. Segundo CHERNICHARO (1997), as idades de lodo verificadas em reatores UASB são usualmente superiores a 30 dias, tempo suficiente para que o lodo descartado do sistema se encontre estabilizado.

3.2.2 Vantagens e Desvantagens dos Sistemas Anaeróbios

O desenvolvimento e a aplicação dos sistemas anaeróbios para o tratamento de esgotos vem crescendo substancialmente nos últimos anos, isso devido às vantagens que os sistemas anaeróbios apresentam. Entretanto, existem desvantagens que devem ser levadas em consideração na escolha do processo. Todos os sistemas de tratamento quer seja físico, químico ou biológico apresentam vantagens e desvantagens, as quais devem ser avaliadas em um estudo de viabilidade técnica e econômica.

A TAB. 3.3 apresenta algumas vantagens e desvantagens dos sistemas anaeróbios.

TABELA 3.3 - Vantagens e desvantagens dos sistemas anaeróbios

vantagens e desvantagens des sistemas anderoores			
Vantagens	Desvantagens		
Satisfatória eficiência na remoção de DBO	Partida do processo lenta		
Baixos requisitos de áreas	Remoção de nitrogênio e fósforo insatisfatória		
Baixa produção de lodo	Possibilidades de maus odores, porém controláveis		
Baixo consumo de energia	Possibilidades de gerar efluentes com aspecto desagradável		
Baixo consumo de nutrientes	Bioquímica e microbiologia da digestão anaeróbia são complexas		
Baixo custo de implantação	As bactérias metanogênicas são susceptíveis à inibição por um grande número de compostos		
Boa resistência a variações de cargas			
Conversão da matéria orgânica em metano	Dificuldades em satisfazer padrões de lançamento bem restritivos, usualmente necessitando de pós-		
Possibilidade de preservação da biomassa sem alimentação do reator por um período longo	tratamento		

Fonte: adaptado de McCARTY (1964b), VON SPERLING (1995), LETTINGA et al (1996)

3.3 O Pós-Tratamento de Efluentes de Reatores UASB

3.3.1. Preliminares

Apesar de todas as grandes vantagens referentes aos sistemas anaeróbios de tratamento de esgotos, os mesmos têm dificuldades em produzir um efluente que se enquadre à legislação ambiental. O efluente final dos processos anaeróbios apresenta matéria orgânica, gases dissolvidos, nutrientes e organismos patogênicos, conferindo ao efluente características usualmente em desacordo com a legislação ambiental vigente (SOUZA & FORESTI, 1997; AISSE & LEITE, 1997).

A TAB. 3.4 indica alguns parâmetros, estabelecidos pela Deliberação Normativa DN nº 010/86 do Conselho de Política Ambiental de Minas Gerais, com seus respectivos padrões de lançamento de efluentes nas coleções de corpos d' água (MINAS GERAIS, 1986).

TABELA 3.4 - Padrões de lançamento de efluentes nas coleções de corpos d'água

Parâmetro	Valores
Temperatura (°C)	≤ 40
pH	5 a 9
$DBO_5 (mg/L)$	≤ 60
DQO (mg/L)	≤ 90
Sólidos em Suspensão (mg/L)	≤ 100 máxima diária ≤ 60 média mensal

Fonte: adaptado Deliberação Normativa DN nº 010/86 COPAM, MINAS GERAIS (1986)

Deve-se destacar que os valores de 60 mgDBO/L e 90 mgDQO/L são incoerentes, uma vez que, normalmente, a relação entre DQO e DBO no esgoto bruto varia entre 2 a 2,5,

deve-se esperar que a mesma relação para esgoto tratado seja superior. Esta questão vem sendo motivo de varias discussões em seminários e congressos.

3.3.1. Alguns Sistemas de Pós-tratamento

Os sistemas de pós-tratamento devem ser concebidos, preferencialmente, em consonância com o conceito básico dos reatores anaeróbios, sendo simples e de baixo custo. Algumas associações dos sistemas de tratamento de esgotos anaeróbio e aeróbio podem contribuir para a redução de custos operacionais e energéticos do sistema, representando alternativas promissoras, técnica e economicamente, para países em desenvolvimento.

Dentre algumas alternativas pesquisadas de processos de pós-tratamento de efluentes de reatores UASB, encontram-se sistemas aeróbios e anaeróbios, destacando-se:

- Lagoas de estabilização
- Lodos ativados
- Biofiltro aerado submerso
- Aplicação no solo
- Filtro anaeróbio
- Reator anaeróbio de leito expandido
- Filtro biológico

A TAB. 3.5 descreve sucintamente alguns tipos de sistemas que têm sido pesquisados para o pós-tratamento de efluentes de reatores anaeróbios.

TABELA 3.5 - Descrição sucinta de processos de pós-tratamento de efluentes de reatores anaeróbios

Tratamento	Principais características	Fonte
Filtro anaeróbio + Escoamento superficial no solo	Forma das rampas retangular de 40 m x 4,35 m, inclinação de 3,5%, grama Tifton (<i>cynodon</i> sp). Taxa de aplicação de 0,1 e 0,2 m³/m.h, obteve remoção de DBO de 91 e 94% para as respectivas taxas de aplicação.	CORAUCCI FILHO et al. (2000)
Decantador/digestor + Filtro anaeróbio + Escoamento subsuperficial	1 ' ' 1 ' ' 1 ' ' ' ' ' ' ' ' ' ' ' ' '	LUCAS FILHO et al. (2000)
Reator UASB + wetlands	Reator UASB + Reator UASB com 1,5 m³, 0,8 m diâmetro e 3 m de altura. Tempo de detenção hidráulica de 3 a 6 h. Sistema	
Reator UASB + Lagoa de polimento Reator UASB com 810 m³ e θh de 8 h. Foram utilizadas duas lagoas chicaneadas operando em série ou paralelo com θh de 2; 3,5; 5 e 10 dias. Apesar da eficiência de remoção de DQO ter variado entre 15,1 a 75,6% para TDH de 5 dias e de 34,8 a 76,5% para θh de 10 dias, as concentrações efluentes de DQO ficaram entre 53 e 51 mg/L para ambos θh pesquisados.		ARANTES et al. (2000)
Reator UASB + Lagoa facultativa		
Tanque séptico e Filtros anaeróbios Tanque séptico do tipo prismático retangular, com duas câmaras em série, volume 8,82 m³. Filtros com 0,7 m de largura, 4,0 m de comprimento e 1,2 m de altura; forma retangular; meio suporte (brita 4, seixo, tijolos cerâmicos, anéis de conduítes); O sistema apresentou resultados muito bons no efluente final com concentrações variando de 13 a 23 mgCOT/L, 15 a 20 mgSS/L e 95 a 128 mgDQO/L.		ANDRADE NETO et al. (2000)
Reator UASB + Filtro biológico aerado submerso	Reator UASB com diâmetro de 0,8 m e altura de 4,0 m; Filtro biológico aerado submerso construído em alvenaria com seção quadrada de 0,6 m, e altura de 3,5 m. Vazão de dimensionamento de 250 L/h. Foi utilizado como material de enchimento do FB um recheio plástico tipo colméia. O efluente apresentou concentração de DQO de 105 ± 58 mg/L, representando uma eficiência de 78,1%. Para SST a eficiência observada foi de 75,9%.	AISSE et al. (2000a)
Reator UASB + Filtro anaeróbio	1	MACHADO et al. (1997)

 TABELA 3.5
 Descrição sucinta de processos de pós-tratamento de efluentes de reatores anaeróbios (Continuação)

Tratamento	Principais características	Fonte
Reator UASB + Aplicação no solo	Reator UASB com 477 m³ e pequena parcela do efluente encaminhada a três rampas de escoamento superficial com área unitária de 3 m x 25 m; inclinação de 4%; taxa aplicação 0,2 a 0,6 m³/m.h. Foram obtidos resultados médios de DBO variando de 48 a 52 mg/L, DQO de 98 a 103 mg/L e SST de 17 a 21 mg/L.	
Reator UASB + Filtro biológico	Reator UASB com diâmetro de 0,8 m e filtro biológico com diâmetro de 0,6 m, ambos com altura de 4,0 m. Vazão de dimensionamento de 250 L/h. O material utilizado para enchimento do FB foi a brita. O efluente apresentou concentração de DQO de 136 ± 110 mg/L, representando uma eficiência de 71,6%. Para SST a eficiência observada foi de 64,3%. Sistema com retorno de lodo aeróbio sedimentado para o reator UASB.	AISSE et al. (2000b)
Reator UASB + filtro anaeróbio operando em regime hidráulico transiente	bio operando em hidráulico transiente. O sistema UASB/FAn apresentou eficiência em termos de remoção de DQO, da ordem de 80 a 90%, e concentrações SS no efluente final, usualmente abaixo de 20 mg/L.	
Reator UASB + Sistema em escala piloto. Volume do Reator UASB 416 L, reator de lodos ativados 23 L; crescimento da biomassa disperso. Obteve concentrações médias de DQO e SS no efluente final em torno de 55 mg/L e 18 mg/L, respectivamente. O sistema UASB/LA apresentou eficiência em torno de 90% de remoção de DQO.		FREIRE <i>et al.</i> (1999)
Reator anaeróbio compartimentado + Filtro biológico	Filtro biológico com aeração forçada. Obteve eficiências médias de remoção em termos de DBO e DQO de: 73 e 70% para TAS de 1,5 m³/m².d; 59 e 55% para TAS de 7,5 m³/m².d; 48 e 40% para TAS de 13,0 m³/m².d.	BELÉM (1996) aput COLETTI <i>et a.l</i> (1997)
Reator UASB com 9 m³ operando com θh de 5,5 h e 7,5 h. Foram utilizadas duas lagoas, sem e com chicanas, operando em paralelo com TDH de 8 dias. As concentrações médias obtidas para o efluente final foram respectivamente: DBO de 128 e 120 mg/L, DQO de 260 e 261 mg/L, SS de 136 e 176 mg/L. As eficiências médias globais foram de 66 e 67% para DBO, 45 e 44% para DQO.		SOARES et al. (2000)
Decantador digestor + Filtro biológico	Forma retangular; Decantador digestor Q = 0,4 m³/e.p.; Filtro biológico COV = 0,4 kgDBO/m³.d; O sistema obteve eficiência de remoção aproximadamente de 74% para DQO e 89% para DBO.	VAN DER GRAAF <i>at al.</i> (1988)
Reator UASB + Biofiltro aerado submerso	Dimensões do reator UASB 2,3 x 2,3 m, Biofiltro 1,5 x 1,5 m, ambos com altura de 5,3 m; Diferentes tipos de material de enchimento (brita 0, brita 2, brita 4 e areia); Carga hidráulica reator UASB = 0,65 m³/m².h e BF = 1,5 a 2,4 m³/m².h; TDH reator UASB de 8,5 h e BF de 0,5 a 1,3 h. Taxa de aeração no BF de 12 Nm³/m².h. As concentrações no efluente do sistema foram menores que 30 mg/L de SS e menores que 90 mg/L de DQO.	GONÇALVES et al. (2000)

3.4 Filtros Biológicos Percoladores - FBP

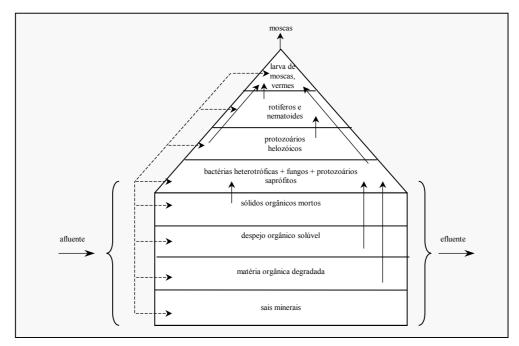
3.4.1 Preliminares

Segundo JORDÃO & PESSÔA (1995), os primeiros filtros biológicos percoladores surgiram na Inglaterra, no final do século XIX. São processos de tratamento por oxidação biológica, não ocorrendo o fenômeno físico de filtração ou peneiramento. Portanto, o nome filtro é impróprio, porém é reconhecido mundialmente.

Inicialmente, os filtros biológicos percoladores constituíam-se de tanques de retenção, onde o esgoto era mantido em contato com o material suporte por períodos de tempo determinados, com ciclos de enchimento e esvaziamento do tanque. Como o sistema era intermitente, ocorriam alguns problemas operacionais, como colmatação dos vazios e dispêndio de tempo com enchimento e esvaziamento, além das baixas cargas aplicadas.

O sistema evoluiu a partir da verificação de que a aplicação contínua de esgoto, previamente sobre o meio suporte, possibilitava o desenvolvimento de condições favoráveis ao crescimento de uma flora e fauna mista de microrganismos, mantendo-se um equilíbrio biológico suficiente para decompor a matéria orgânica afluente (BRANCO, 1986).

A aplicação dos filtros biológicos percoladores ao tratamento de esgoto é bastante utilizada nos Estados Unidos (USEPA,1974a). No Brasil, esses sistemas também podem encontrar uma elevada aplicabilidade, tendo em vista, principalmente, a sua simplicidade e baixo custo operacional. Entretanto, estes sistemas não apresentaram uma maior disseminação no Brasil, sendo raras as unidades implantadas e atualmente


em operação no território brasileiro. No tocante à utilização de filtros biológicos para o pós-tratamento de efluentes de reatores anaeróbios, tem-se notícia de pesquisas que estão sendo realizadas no âmbito do Programa de Pesquisa em Saneamento Básico – PROSAB-2 e de algumas unidades operadas pela Companhia de Saneamento do Estado do Paraná – SANEPAR.

Segundo AISSE *et al.* (2000c), as ETE's de Cambé e Londrina (PR), constituídas por reator RALF (Reator Anaeróbio de Leito Fluidificado) seguido de filtro biológico percolador, entraram em operação, respectivamente, em 1998 e no final de 2000. Essas plantas funcionam em escala plena, tratando esgotos sanitários. A ETE Caçadores, localizada em Cambé - PR, foi projetada para uma vazão final de plano de 134,8 L/s e população atendida de 57.618 habitantes. O filtro biológico percolador foi projetado com taxas de aplicação hidráulica de 24,4 m³/m².d, para vazão de tempo seco e 48,9 m³/m².d, para vazão máxima de períodos chuvosos, e carga orgânica volumétrica de 0,87 kgDBO/m³.d.

3.4.2 Princípio de Funcionamento

Os filtros biológicos percoladores são sistemas de tratamento de esgotos por processo biológico. O sistema é constituído de um meio suporte de material grosseiro, tal como pedras, ripas ou material plástico, sobre o qual os esgotos são aplicados continuamente por meio de distribuidores rotativos ou estacionários. Os distribuidores rotativos são movidos pela própria carga hidráulica dos esgotos ou energia elétrica. Após a aplicação, os esgotos percolam pelo meio suporte em direção aos drenos de fundo. Esta percolação permite o crescimento bacteriano na superfície do material de enchimento, formando

uma película gelatinosa ativa, constituída de fungos, bactérias aeróbias e anaeróbias, algas, protozoários, insetos e larvas. Segundo HELLER (1989), a essência do processo baseia-se na manutenção de um ecossistema equilibrado no interior do filtro. A FIG 3.2 mostra a pirâmide trófica da comunidade de microrganismos normalmente estabelecida no biofilme formado no meio suporte.

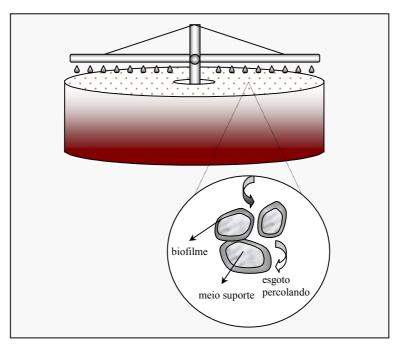


FIGURA 3.2 - Pirâmide trófica da comunidade de microrganismos formada no biofilme Fonte: ALEM SOBRINHO (1983)

O líquido escoa rapidamente pelo meio suporte, entrando em contato com os microrganismos existentes no biofilme, responsáveis pela decomposição do material orgânico presente. A matéria orgânica é adsorvida pela película microbiana, ficando retida um tempo suficiente para a sua estabilização. Durante o funcionamento do filtro biológico, placas do biofilme se desprendem, isto devido ao grau de estabilização do biofilme e à tensão de cisalhamento causada pela velocidade de escoamento do liquido entre os vazios do meio suporte. Esse material desprendido deve ser removido nos

decantadores, de forma a obter um efluente final clarificado e com baixas concentrações de sólidos em suspensão (VON SPERLING, 1995).

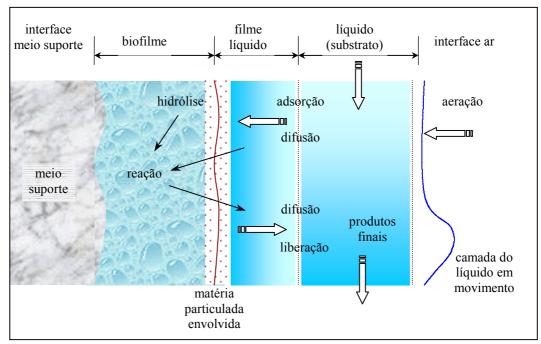

Os filtros biológicos percoladores são sistemas aeróbios, pois o ar circula nos espaços vazios existentes entre o meio suporte, fornecendo o oxigênio para a respiração dos microrganismos. A ventilação é usualmente natural, embora possa ser forçada. A FIG. 3.3 apresenta o esquema de funcionamento do filtro biológico.

FIGURA 3.3 - Esquema de funcionamento de um filtro biológico Fonte: adaptado de VON SPERLING (1995)

De acordo com CHRISTENSEN et al. (1988), a remoção do substrato através dos biofilmes inclui três fenômenos básicos: difusão, reação e transporte dos produtos da reação para o exterior do biofilme. A matéria orgânica é adsorvida pela camada biológica, ocorrendo degradação aeróbia na interface externa do biofilmes. À medida que os microrganismos crescem, a espessura da camada biológica aumenta, o oxigênio não consegue penetrar nas camadas mais internas, ocorrendo na interface interna a

degradação por via anaeróbia. A FIG. 3.4 ilustra os mecanismos e processos envolvidos com o transporte e a degradação de substratos no biofilme.

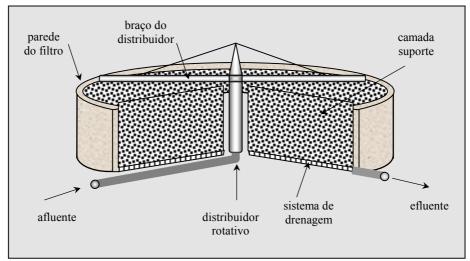


FIGURA 3.4 - Representação esquemática dos fenômenos básicos de degradação de substratos em biofilmes

Fonte: adaptado de WEF (1992), REYNOLDS et al. (1995), GONÇALVES (1996)

3.4.3 Principais Características

Os componentes principais de um filtro biológico percolador são ilustrados na FIG. 3.5. Podem ser divididos em três partes principais: dispositivo de distribuição, camada suporte e sistema de drenagem.

FIGURA 3.5 - Seção típica de um filtro biológico e seus componentes Fonte: adaptado de BENEFIELD & RANDALL (1987) e QASIM (1994)

Dispositivo de Distribuição

De acordo com JORDÃO & PESSÔA (1995), a distribuição dos esgotos sobre o meio suporte pode ocorrer por meio de dispositivos fixos ou móveis. Os dispositivos fixos não garantem uma uniformidade na distribuição e praticamente não são mais utilizados. Os dispositivos móveis rotativos são aqueles que possuem melhor performance na distribuição uniforme do líquido sobre a superfície da camada suporte. Desse modo, a distribuição do substrato é mais homogênea e o biofilme formado possui melhores características.

Segundo METCALF & EDDY (1991), o sistema de distribuição é projetado em função da taxa de aplicação superficial, da taxa de dosagem por passagem do braço distribuidor e também em função de detalhes construtivos. A equação 3.1 fornece a velocidade rotacional do distribuidor.

$$n = \frac{qs}{a \cdot TD} \tag{3.1}$$

na qual:

n = velocidade rotacional do distribuidor (rotação/min)

qs = taxa de aplicação superficial (mm/min)

TD = taxa de dosagem por braço do distribuidor (mm/rotação)

a = número de braços do distribuidor

A TAB. 3.6 apresenta as taxas de dosagens típicas aplicadas em filtros biológicos percoladores, em função da carga orgânica aplicada.

TABELA 3.6 - Taxas de dosagens típicas aplicadas em filtros biológicos percoladores

Carga orgânica volumétrica (kgDBO/m³.d)	Taxa de dosagem (mm/rotação)
< 0,4	76,2
0,8	152,4
1,2	228,6
1,6	304,8
2,4	457,2
3,2	609,6

Fonte: adaptado de METCALF & EDDY (1991)

Normalmente, os números mais comuns de braços do distribuidor são dois, quatro ou seis e suas rotações ficam entre 1 e 7 rotações por minuto (IMHOFF & IMHOFF, 1986).

Camada Suporte

Segundo JORDÃO & PESSÔA (1995), existem diversos tipos de materiais que podem ser utilizados como meio suporte. Normalmente, utiliza-se aquele de maior disponibilidade local e de menor custo de transporte. Entretanto, algumas características do material devem ser levadas em consideração, tais como: peso específico, superfície específica e índice de vazios. O peso específico refere-se mais à questão estrutural do filtro biológico. A superfície específica do meio suporte está relacionada com a área de contato entre o líquido e o biofilme formado sobre o meio suporte. O índice de vazios influencia na circulação do esgoto e do ar, por entre a camada suporte, mantendo o ambiente nas condições aeróbias favoráveis ao equilíbrio da cultura biológica. A TAB. 3.7 fornece as características de alguns meios suportes utilizados em filtros biológicos.

TABELA 3.7 - Características de alguns meios suportes

Material	Tamanho nominal (cm)	Peso específico (kg/m³)	Superfície específica (m²/m³)	Índice de vazios (%)	Referência: adaptado de
Agregado leve de lodo de esgoto	2,5 a 5,0	680 *	-	58	ALEM SOBRINHO (1983)
Cerâmica	3,8 x 3,8	654	115	68,2	BENEFIELD & RANDALL (1987)
Escória de alto forno	5,0 a 7,6	1090	66	49	BENEFIELD & RANDALL (1987)
Escória de alto forno	5,0 a 12,7	801 a 1200	46 a 69	40 a 60	METCALF & EDDY (1991)
Escória de alto forno	5,0 a 7,6	1110	100	53,5	PINTO (1995)
Pedra	2,5 a 7,6	1440	62	46	WEF (1992)
Pedra convencional	5,0 a 10,0	1350	50 a 70	50	JORDÃO & PESSÔA (1995)
Plástico	60 x 60 x 120	32 a 96	82 a 115	94 a 97	USEPA (1974b)
Anéis plásticos	2,5	88	220	-	LEKANG & KLEPPE (2000)
Grama artificial	45 x 140	138	284	-	LEKANG & KLEPPE (2000)
Serragem de couro	1,27	177	-	-	BIDONE <i>at al.</i> (1999)

^{*} depois de empilhado no filtro e "molhado"

A FIG.3.6 ilustra alguns tipos de meios suportes utilizados em filtros biológicos.

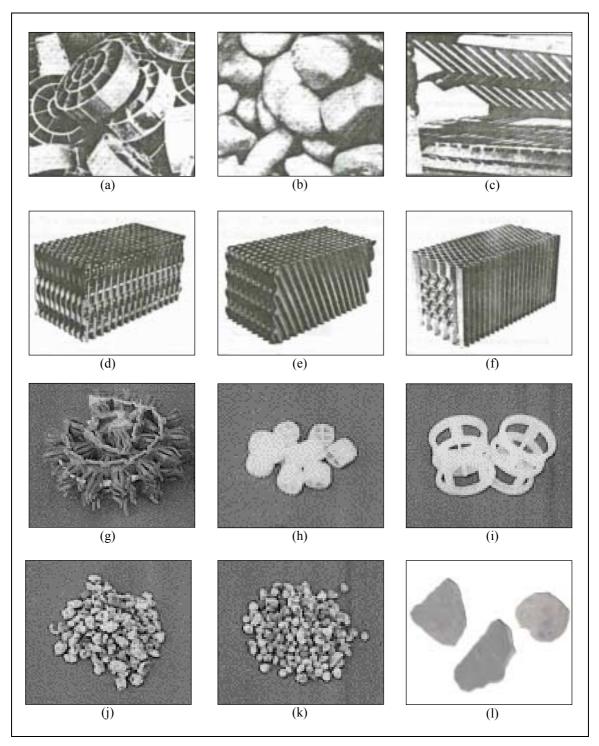
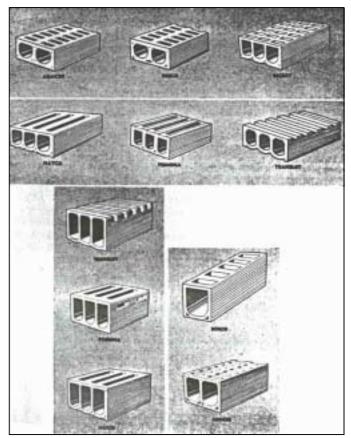


FIGURA 3.6 - Tipos de meios suportes utilizados em filtros biológicos percoladores


(a) anéis plásticos (b) pedra (c) bloco horizontal HO (d) bloco vertical VFC (e) bloco cros-flow 50° (f) bloco vertical VSC (g) grama artificial (h) anéis plásticos Ø 9,1 mm (i) anéis plásticos Ø 25 mm (j) agregado com dolomita Ø 2 a 7 mm (k) agregado leve Ø 2 a 4 mm (l) escória alto forno Ø 4 a 6 cm (utilizada na presente pesquisa)

Fonte: (a) a (f) WEF (1992) e METCALF & EDDY (1991); (g) a (k) LEKANG & KLEPPE (2000)

Sistema de Drenagem

O sistema de drenagem, localizado abaixo da camada suporte, é importante para garantir o perfeito escoamento do líquido através do meio suporte e a distribuição uniforme sobre a superfície. O sistema de drenagem possibilita a coleta do líquido percolado e a passagem de ar para o interior do filtro.

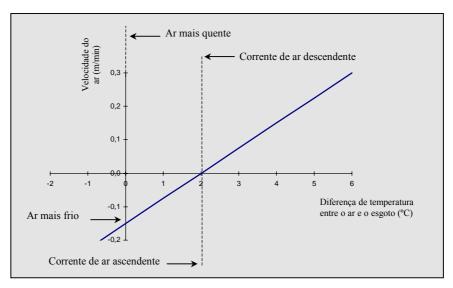

São vários os materiais empregados nos sistemas de drenagem, podendo-se destacar os blocos ou calhas de concreto, cerâmica, plásticos, dentre outros. Esses materiais são dispostos em toda a área do fundo do filtro, garantindo condições de escoamento para receber o esgoto aplicado e conduzí-lo à tubulação de descarga do efluente. A FIG.3.7 ilustra alguns tipos de drenos pré-moldados.

FIGURA 3.7 - Modelos de drenos pré-moldados Fonte: adaptado de PESSÔA & JORDÃO (1982)

Tanto o sistema de drenagem quanto a camada suporte influenciam na ventilação necessária para manter as condições aeróbias do processo, no interior do filtro biológico percolador. A ventilação natural acontece por gravidade dentro do filtro. A direção do fluxo de ar poderá ser para baixo ou para cima, dependendo da densidade do ar no interior do filtro, que por sua vez depende do gradiente de temperatura entre o esgoto e o ar ambiente. Normalmente, há um diferencial de temperatura e um processo de troca de calor acontece dentro da camada suporte do filtro (METCALF & EDDY, 1991).

Experiências realizadas por HALVORSON (1936), citadas por IMHOFF & IMHOFF (1986), indicam que uma diferença de temperatura de 6 °C entre o esgoto e o ar ambiente provoca uma corrente de ar de 0,3 m³/m² por minuto. Quando a temperatura ambiente for superior a 6 °C em relação à do esgoto, há formação de corrente de ar descendente, com uma taxa de aplicação de 18 m/h. A ventilação descendente se interrompe quando essa diferença for inferior a 2 °C e além desse ponto começa a corrente ascendente. As FIG. 3.8 e 3.9 mostram como ocorre a circulação de ar no interior de um filtro biológico percolador.

FIGURA 3.8 - Circulação de ar no interior de um filtro biológico percolador Fonte: adaptado de IMHOFF & IMHOFF (1986)

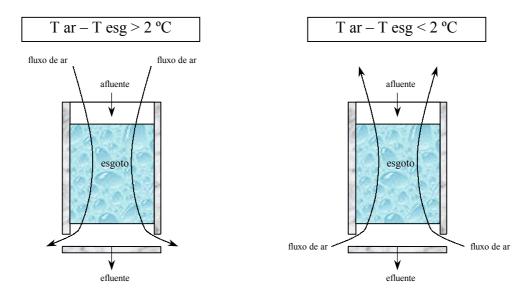


FIGURA 3.9 - Esquema do fluxo de ar no interior do filtro biológico percolador

Segundo as recomendações da American Society of Civil Engineers (ASCE, 1982), as áreas para a passagem do ar, localizadas na soleira do filtro, não devem ser inferiores a 15% da área superficial, e seu sistema de drenagem não deve ter mais do que 50% de sua área transversal submergida pelo líquido.

ALEM SOBRINHO (1983) cita que os fabricantes de material de enchimento plástico normalmente recomendam uma área de ventilação de 0,1 m² para cada 3 a 4,6 m de perímetro do filtro.

3.4.4 Classificação

Os filtros biológicos percoladores são classificados pela taxa hidráulica aplicada à superfície e pela carga orgânica aplicada ao volume de leito percolador, resultando, desse modo, em cinco classificações principais: baixa taxa, taxa intermediária, alta taxa, taxa super alta e grosseiro (USEPA, 1977). As faixas de variação das taxas normalmente utilizadas e algumas características operacionais dos filtros biológicos percoladores tratando esgotos pré-decantados são apresentadas na TAB. 3.8.

TABELA 3.8 - Principais características operacionais dos filtros biológicos percoladores

Condições	Taxas operacionais						
operacionais	baixa	intermediária	alta	super alta	grosseiro		
Meio suporte	Pedra, Escória	Pedra, Escória	Pedra, Escória	Plástico	Plástico		
Taxa aplicação superficial (m³/m².d)	1 a 4	4 a 10	10 a 40	12 a 70	45 a 185		
Carga orgânica volumétrica (kgDBO/m³.d)	0,08 a 0,40	0,24 a 0,48	0,48 a 1,00	0,48 a 1,60	1,60 a 5,00		
Altura da camada suporte (m)	1,5 a 2,4	1,8 a 2,4	0,9 a 1,8	3,0 a 12,0	4,6 a 12		
Razão de recirculação	0	0 a 1	1 a 2	1 a 4	1 a 4		
Presença de insetos (moscas)	muitas	algumas	poucas	poucas ou nenhuma	poucas ou nenhuma		
Eficiência remoção DBO (%)	80 a 90	50 a 70	65 a 85	65 a 80	40 a 65		
Efluente	bem nitrificado	parcialmente nitrificado	baixa nitrificação	baixa nitrificação	baixa nitrificação		

Fonte: adaptado de FAIR et al. (1979), METCALF & EDDY (1991) e QASIM (1994)

Conforme VON SPERLING (1995), nos sistemas de filtros biológicos percoladores de baixa taxa a quantidade de DBO aplicada é menor. Com isso, a disponibilidade de alimentos é menor, o que resulta numa estabilização parcial do lodo (auto-consumo da matéria orgânica celular). Embora de operação mais simples e apresentando baixo consumo energético, a eficiência dos filtros biológicos percoladores de baixa carga é comparável à do sistema de lodos ativados convencional.

A FIG. 3.10 apresenta o fluxograma típico do sistema de filtros biológicos percoladores de baixa taxa, em que normalmente não há recirculação do efluente.

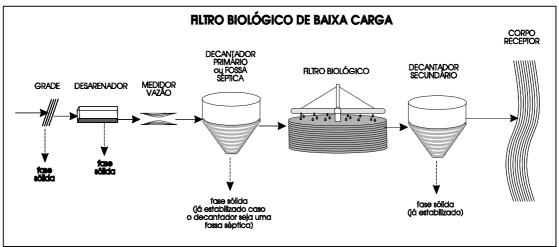
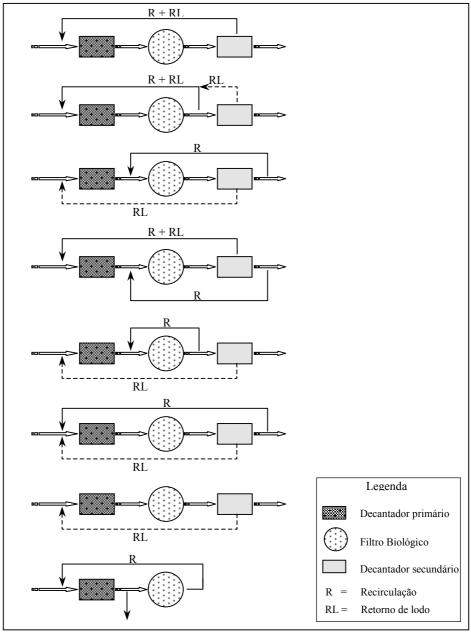



FIGURA 3.10 - Fluxograma típico de um filtro biológico de baixa carga

Fonte: VON SPERLING (1995)

Os filtros biológicos de alta taxa são conceitualmente similares aos de baixa carga. No entanto, por receberem uma maior carga de DBO por unidade de volume de leito percolador, o requisito de área é menor. Nesses filtros ocorre também uma ligeira estabilização do lodo (VON SPERLING, 1995). Nos sistemas de alta taxa normalmente há recirculação do efluente. A FIG. 3.11 apresenta as várias possíveis configurações de sistemas de filtros biológicos de alta taxa.

FIGURA 3.11 - Configurações típicas de sistemas de filtros biológicos de alta carga Fonte: adaptado de WEF (1992) e USEPA (1977)

Os filtros biológicos percoladores podem, ainda, ser utilizados em série, a fim de se melhorar a eficiência ou de se tratar esgotos mais concentrados, vindo a constituir os filtros de dois estágios (IMHOFF & IMHOFF, 1986; JORDÃO & PESSÔA, 1995).

Algumas vantagens e desvantagens dos sistemas de filtros biológicos percoladores estão apresentadas na TAB. 3.9.

TABELA 3.9 - Vantagens e desvantagens dos filtros biológicos percoladores

Vantagens	Desvantagens
Satisfatória eficiência na remoção de DBO	Relativamente sensível a descargas tóxicas
Requisitos de áreas relativamente baixos	Necessidade do tratamento e disposição final do lodo
Equipamentos mecânicos simples	Relativa dependência da temperatura do ar
Baixo consumo de energia	Possíveis problemas com moscas, especialmente nos filtros de baixa taxa.
Baixo custo operacional	Possíveis problemas com entupimento dos espaços vazios do meio suporte
Simplicidade operacional	Elevada perda de carga no sistema
Boa resistência às sobrecargas de vazão	

Fonte: adaptado de MIGLINO (1978) e VON SPERLING (1995)

Algumas das limitações dos filtros biológicos percoladores com leito de pedras, quando os mesmos operam com elevadas cargas orgânicas, referem-se ao entupimento dos espaços vazios, devido ao crescimento excessivo da película biológica. Nestas condições, podem ocorrer inundações e falhas do sistema.

3.4.5 Eficiências dos Filtros Biológicos Percoladores

Os filtros biológicos percoladores, de uma maneira em geral, apresentam bons resultados na remoção de matéria orgânica. Em experimentos realizados por ALEM SOBRINHO (1983), utilizando filtros biológicos percoladores para o tratamento de esgotos domésticos, com leito de profundidade de 1,8 m, foram obtidas eficiências de remoção de DBO e DQO de 82% e 65%, para taxas de aplicação de 28,1 m³/m².d a 60

m³/m².d, e de 50% a 43%, para a taxa de aplicação de 93,5 m³/m².d, respectivamente. Esses resultados foram obtidos com o uso de enchimento de agregado de lodo de esgoto. Quando o meio suporte foi constituído por anéis plásticos, as eficiências de remoção de DBO e DQO foram de 71% e 62%, para taxas de aplicação de 28,1 m³/m².d a 60 m³/m².d, e de 55% e 39%, para a taxa de aplicação de 93,5 m³/m².d, respectivamente.

VAN DER GRAAF *et. al.* (1988) pesquisaram um sistema constituído por tanque séptico de câmeras em série, seguido por filtro biológico percolador, e obtiveram resultados de remoção de DBO e DQO de 89% e 74%, respectivamente.

Alguns sistemas para tratamento de esgoto doméstico, apresentados pela Water Environment Federation (WEF, 1992), indicam eficiências de remoção de DBO entre 54% e 86%, para taxas de aplicação hidráulica variando entre 1,22 m³/m².d e 9,76 m³/m².d, com temperaturas médias de 17 °C e 24 °C.

Vários modelos teóricos e empíricos encontram-se disponíveis para o dimensionamento de filtros biológicos percoladores, para tratamento de esgoto decantado. O modelo mais tradicional é o desenvolvido pelo National Research Council – NRC (EUA), conforme representado pela equação 3.2.

$$E = \frac{1}{1 + 0,443\sqrt{\frac{Cv}{F}}}$$
 (3.2)

na qual:

E = eficiência de remoção de DBO₅ (%)

Cv = carga orgânica volumétrica (kg/m³.d)

F = fator de recirculação

O fator de recirculação é definido pela equação 3.3

$$F = \frac{1+r}{(1+0,1\times r)^2} \tag{3.3}$$

na qual:

r = razão de recirculação

Em termos de remoção de organismos patogênicos em filtros biológicos percoladores, MARA & CAIRNCROSS (1989) citados por BASTOS (1996) indicam eficiências de remoção, em unidades logarítmicas, de 0 a 2 para bactérias e helmintos e de 0 a 1 para vírus e protozoários. VON SPERLING (1995) cita para os filtros biológicos eficiências de remoção de DBO entre 80 e 90% e remoção de coliformes de 60 a 90%.

4. MATERIAL E MÉTODOS

4.1 A Planta Piloto

Os experimentos com as unidades piloto, reator anaeróbio de manta de lodo (UASB) e o Filtro Biológico Percolador (FBP), foram desenvolvidos no Laboratório de Instalações Piloto Prof. Ysnard Machado Ennes (LIP), do Departamento de Engenharia Sanitária e Ambiental da UFMG (DESA-UFMG). Essas unidades integram o Programa de Pesquisa em Saneamento Básico (PROSAB) e a planta piloto do Sistema de Tratamento de Esgotos por Processos Anaeróbios e Aeróbios (STEPAA), esta última desenvolvida em parceria com o Laboratório de Controle de Processos Industriais (LCPI) do Departamento de Engenharia Elétrica da UFMG.

O STEPAA é constituído de um reator UASB e quatro linhas paralelas de póstratamento, que podem operar conjuntamente. A FIG. 4.1 esquematiza as linhas de tratamento existentes e suas respectivas modalidades.

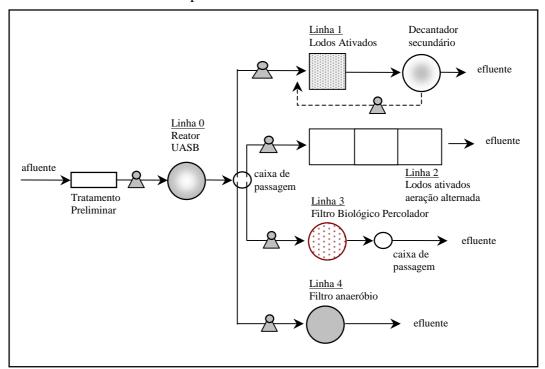


FIGURA 4.1 - Diagrama esquemático da planta STEPAA

A planta pode ser operada através de um painel local ou de um console de supervisão, operação e engenharia, constituído de um microcomputador - PC no qual é executado o programa supervisório InTouch™. A aquisição de dados da planta é feita através de um controlador lógico programável - CLP AL-2002 da Altus™ e a comunicação entre o InTouch™ e o CLP se faz via porta serial, RS-232, usando o servidor DDE − Dynamic Data Exchange AL1000 (POLITO BRAGA *et al.*, 2000). O sistema foi concebido de forma a possibilitar a operação da planta de duas maneiras: *Modo Local e Modo Remoto*, sendo que o modo remoto pode ser manual ou automático. Em *Modo Local*, o controle era realizado através de painel local. A FIG. 4.2 ilustra o painel de operação em modo local.

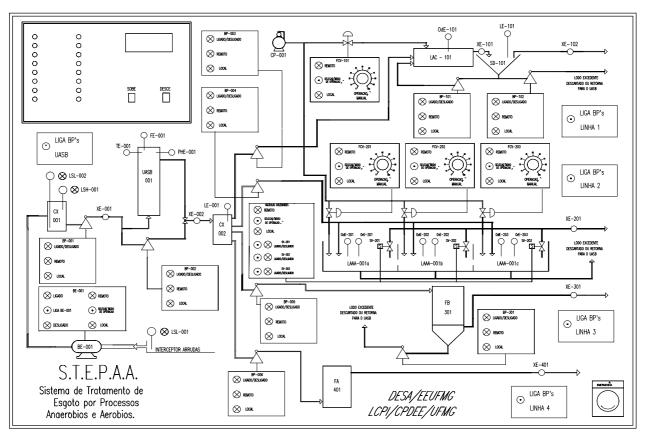


FIGURA 4.2 - Painel de operação em modo local – Projeto STEPAA, 1997.

Fonte: POLITO BRAGA et al. (2000)

Em *Modo Remoto*, o controle era realizado através do software instalado. A operação neste modo pode ser manual, com o usuário comandando individualmente os equipamentos, ou automático, com a planta operando com o mínimo de interferência do usuário (GUIMARÃES, 1997).

O aplicativo desenvolvido no software InTouch™ foi dividido em 20 telas. Através dessas telas pode-se programar todas as operações necessárias para se trabalhar, na planta STEPAA (RODRIGUES, 1998). O aplicativo permite a navegação pelas telas de operação das linhas de tratamento, tela de visualização e coleta de dados, dentre outras opções. A FIG. 4.3 mostra a tela de operação da linha 0, responsável pelo controle do reator UASB; a FIG. 4.4 mostra a tela de operação da linha 3, responsável pelo controle do filtro biológico percolador; e a FIG. 4.5 mostra a tela de aquisição de dados.

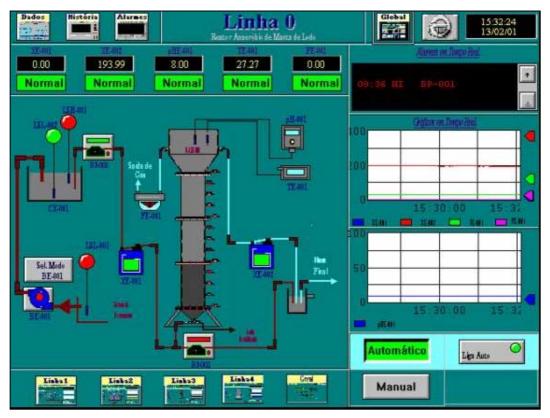


FIGURA 4.3 - Tela de operação da Linha 0, controle do reator UASB

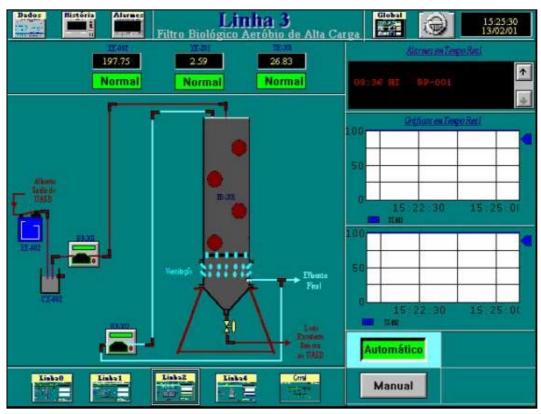
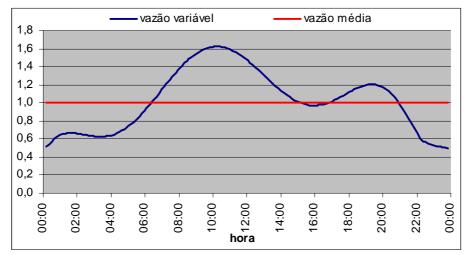



FIGURA 4.4 - Tela de operação da Linha 3, controle do filtro biológico

FIGURA 4.5 - Tela de aquisição de dados

O sistema de automação permitia o controle contínuo de determinados parâmetros, tais como: temperatura, turbidez, vazão, acionamento automático das bombas e recalque do esgoto bruto. O software permitia a operação da planta em regime hidráulico transiente, gerando um hidrograma típico de vazões, conforme apresentado na FIG. 4.6. A equação 4.1 fornece o polinômio ajustado para a vazão variável.

FIGURA 4.6 - Hidrograma típico de vazões

$$\begin{array}{l} Q(t) = Q\text{m\'ed} \ x \ (2,257674899019214 \ x \ 10^{-8} \ x \ t^8 - 1,767215006944928 \ x \\ 10^{-6} \ x \ t^7 + 5,116597876473766 \ x \ 10^{-5} \ x \ t^6 - 6,28364357100304 \ x \ 10^{-4} \ x \\ t^5 + 1,87696007163563 \ x \ 10^{-3} \ x \ t^4 + 2,233369844377985 \ x \ 10^{-2} \ x \ t^3 - \\ 0,1617523061772343 \ x \ t^2 + 0,3327608438175243 \ x \ t + \\ 0,449840128581591) \end{array} \tag{4.1}$$

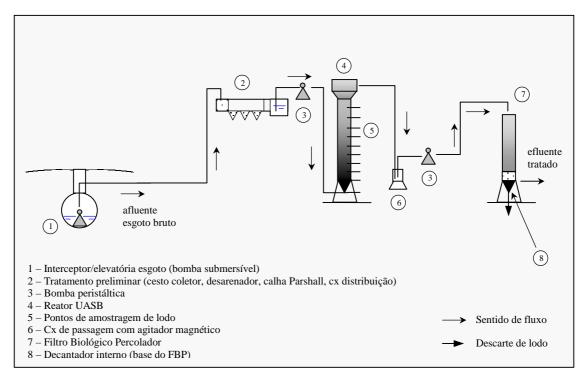
na qual:

Q(t) = vazão no tempo t

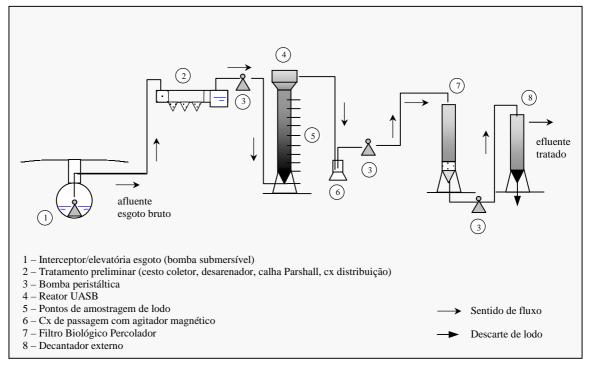
Oméd = vazão média

4.2 Alimentação do Sistema

O LIP recebe esgoto sanitário proveniente do interceptor da margem direita do ribeirão Arrudas, em Belo Horizonte - MG, por meio de um sistema automatizado de bombeamento. O interceptor coleta esgotos de uma área de contribuição de aproximadamente 40 km². A FIG. 4.7 indica as redes de esgoto e as sub-bacias de contribuição, com a respectiva localização do LIP.


FIGURA 4.7 - Redes de esgoto e sub-bacias de contribuição

Fonte: COPASA (1999)


4.3 Configuração do Sistema

A planta operou com duas configurações distintas. A primeira, com o compartimento de decantação instalado na base do corpo do filtro biológico percolador, durante o período entre o 1° e o 259° dia de operação. Na segunda configuração, foi instalado um decantador externo, semelhante ao sistema convencional de filtros biológicos percoladores, que funcionou entre o 260° e o 493° dia de operação.

As FIG. 4.8 e 4.9 representam o fluxograma do aparato experimental com as respectivas configurações operacionais da planta.

FIGURA 4.8 - Fluxograma do aparato experimental com o filtro biológico percolador operando com o decantador interno (base do FBP)

FIGURA 4.9 - Fluxograma do aparato experimental com o filtro biológico percolador operando com o decantador externo (convencional)

4.3.1 Elevatória de Esgotos

O esgoto era bombeado para o LIP por uma bomba submersível, instalada no interior do poço de visita localizado no interceptor de esgotos. A bomba submersível, modelo ABS 300M de ½ CV, era controlada automaticamente por eletrodos de nível localizados dentro da caixa de acumulação/distribuição. A bomba foi colocada dentro de uma gaiola de fibra de vidro com furos de 20 mm, para a retenção de material grosseiro que poderia causar danos à bomba.

4.3.2 Tratamento Preliminar

Antes de alimentar os reatores, o esgoto sanitário passava por um sistema de tratamento preliminar, composto de cesto coletor e caixa de areia, para remoção do material grosseiro e areia, sendo depois encaminhado a um tanque de acumulação/distribuição,

onde estavam instalados os eletrodos de nível para controle automático da elevatória de esgotos. A FIG. 4.10 ilustra o sistema de tratamento preliminar e a TAB 4.1 fornece as características das unidades que compõem o tratamento preliminar.

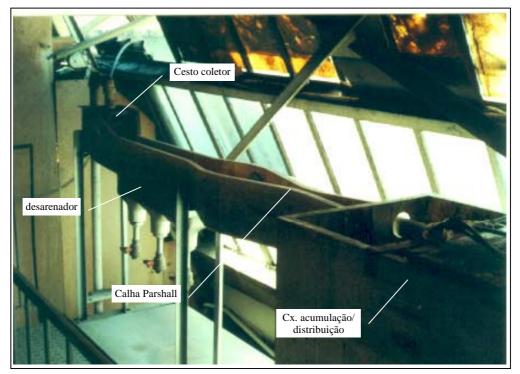


FIGURA 4.10 - Sistema de tratamento preliminar

TABELA 4.1 - Características das unidades que compõem o tratamento preliminar

Unidade	Características
Cesto coletor de material grosseiro	Diâmetro: 20 cm Altura: 25 cm com furos laterais de 16 mm
Caixa de areia	Largura: 10 cm Altura: 26 cm Comprimento: 75 cm Compartimentada em 3 câmaras, com registros de esfera de ¾"
Calha Parshall	Garganta: W = 1"
Caixa de acumulação/distribuição	Largura: 60 cm Altura: 60 cm Comprimento: 100 cm Equipada com eletrodos de controle de nível

4.3.3 Reator UASB

Depois do tratamento preliminar, o esgoto bruto era bombeado para alimentação do reator UASB, por meio de uma bomba peristáltica (Masterflex[®], modelo 7521-40, com duas cabeças "easy load", modelo 7518-10, operando em paralelo, com rotação de 6 a 600 rpm).

O reator UASB era constituído de compartimento de digestão e separador trifásico. No compartimento de digestão estavam distribuídos 13 registros de esfera, em PVC, com diâmetro de ¾" espaçados a cada 25 cm. Estes registros possibilitavam a amostragem do lodo para verificação do perfil de sólidos ao longo de compartimento de digestão. No separador trifásico ocorria a separação dos sólidos, gases e efluente. Os sólidos sedimentados retornavam ao compartimento de digestão, os gases coletados eram encaminhados a um medidor de gases (Ritter®, Tipo TG-05, capacidade de 1 a 60 L/h) e o efluente era encaminhado para a caixa de passagem, onde ocorria a distribuição para as demais umidades de pós-tratamento da planta.

As características principais do reator UASB são apresentadas na TAB. 4.2, enquanto a FIG. 4.11 ilustra a unidade piloto de tratamento.

TABELA 4.2 - Características principais do reator UASB piloto

G	Reator U		
Característica	Compartimento de digestão	Separador trifásico	Total
Material	acrílico	resina poliéster e fibra de vidro	-
Diâmetro interno (mm)	300	300 a 610	-
Altura (m)	3,20	1,00	4,20
Volume útil (L)	224	176	400
Área superficial (m²)	0,071	0,071 a 0,292	-
Pontos de amostragem de lodo	13	1	14

FIGURA 4.11 - Reator UASB

4.3.4 Filtro Biológico Percolador - FBP

O efluente do reator UASB era dirigido a uma caixa de passagem, onde era mantido continuamente misturado para evitar sedimentação de sólidos, e então bombeado para o filtro biológico percolador, por meio de uma bomba peristáltica (Masterflex[®], modelo 7521-40, com uma cabeça "easy load", modelo 7518-10, com rotação de 6 a 600 rpm). Na cabeça das bombas foram utilizadas mangueiras de neoprene ou silicone com diâmetros de 8 mm e 10 mm, respectivamente.

O filtro biológico percolador era constituído de dispositivo de distribuição do afluente, compartimento de reação, fundo falso e decantador. As características principais do filtro biológico percolador são apresentadas na TAB. 4.3, enquanto as FIG. 4.12 e 4.13 ilustram a unidade piloto da planta de tratamento.

TABELA 4.3 - Características principais do Filtro Biológico Percolador piloto

				<u> </u>			
~	Filtro Biológico Percolador (compartimentos)						
Característica	Reação	Fundo falso	Decantação (interno)	Decantação (externo)			
Material	polipropileno	polipropileno	polipropileno	polipropileno			
Diâmetro interno (mm)	300	300	300	300			
Altura do leito percolador (m)	0,85	-	-	-			
Altura total (m)	1,35	0,20	0,20	1,05			
Volume útil (L)	60,00	-	10,50	60,00			
Área superficial (m²)	0,071	-	0,071	0,071			
Orifícios de ventilação	-	38 (Ø ½")	-	-			

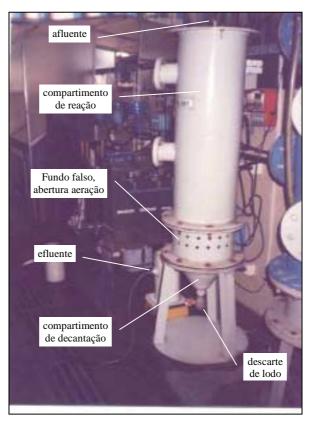


FIGURA 4.12 - Filtro Biológico com decantador interno (configuração utilizada nas Fases I a IV)

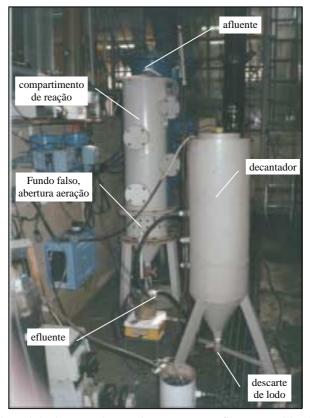


FIGURA 4.13 - Filtro Biológico com decantador externo (configuração utilizada nas Fases V a VIII)

Dispositivo de distribuição do afluente: consistia em um bico aspersor, com orifício de 5 mm de diâmetro, acoplado a mangueira de alimentação no topo do filtro e afastado do leito percolador de 10 cm, aproximadamente.

Compartimento de reação: O compartimento de reação (Leito Percolador) do filtro biológico percolador, com altura de 85 cm e diâmetro igual a 30 mm, foi preenchido com 60 litros de escória de alto forno, classificadas segundo o tamanho de 4 a 6 cm. A caracterização tecnológica da escória é apresentada na TAB. 4.4. Os resultados foram obtidos pela pesquisa realizada por PINTO (1995), que caracterizou mais detalhadamente a escória de alto forno.

TABELA 4.4 - Características intrínsecas da escória de alto forno

Características	Resultados	Normatização
Massa unitária (kg/dm³)	1,11	NBR 7251/82
Massa específica (kg/dm³)	2,50	NBR 9937/87
Absorção (%)	1,80	NBR 9937/87
Porosidade (%)	53,5	-
Área superficial (m²/m³)	≈ 100	-
Textura superficial	porosa	BS 812, part1,1975
Cor	Cinza	avaliação visual

Fonte: adaptado de PINTO (1995)

Fundo falso: O fundo falso era constituído de uma placa perfurada, com diâmetro de 300 mm e orifícios de ½" espaçados a cada 30 mm. Tinha a função de suportar o leito de escória, permitir a drenagem do liquido percolado e a ventilação do meio suporte com a passagem de ar pela base do filtro. As laterais do fundo falso, com altura de 20 cm e diâmetro igual a 300 mm eram vazadas, com dois conjuntos de orifícios de ½",

paralelos e espaçados de 50 mm na horizontal, ao longo de todo o perímetro, totalizando uma área de abertura para a passagem do ar de aproximadamente 0,005 m².

Decantador: Como já mencionado, no experimento foram utilizadas duas configurações, uma com o decantador interno localizado na base do filtro biológico percolador e a outra com o decantador externo ao filtro (ver FIG. 4.12 e 4.13).

O decantador interno, com configuração de cone invertido, tinha altura de 20 cm e diâmetro de 300 mm, perfazendo uma área superficial de 0,071 m² e volume de 10,5 L. Era ligado ao filtro biológico por flange e o efluente percolado do meio suporte era aplicado diretamente à superfície do decantador. Possuía registro de fundo para descarte do lodo e tubulação para saída do efluente. O efluente era dirigido a uma caixa de passagem, onde era mantido continuamente misturado para evitar sedimentação de sólidos, e então parte era bombeada para coleta de amostras.

O decantador externo tinha uma seção inferior cônica, com altura de 25 cm, diâmetro de 300 mm e volume de 5 L; e outra superior cilíndrica, com altura de 80 cm, diâmetro de 300 mm e volume de 55 L, perfazendo uma área superficial de 0,071 m² e volume de 60 L. Para alimentação do decantador externo, o registro de fundo do decantador interno foi mantido totalmente aberto e conectado a uma mangueira, de tal forma que não ocorria mais sedimentação no decantador interno e o efluente escoava livremente. O efluente era então bombeado para o decantador externo, por meio de uma bomba peristáltica (Masterflex[®], modelo 7521-40, com uma cabeça "easy load", com rotação de 6 a 600 rpm). O decantador externo possuía registro de fundo para descarte do lodo,

anteparo de retenção de escuma e conexão para saída do efluente. O efluente era dirigido a uma caixa de passagem, onde também era mantido continuamente misturado para evitar sedimentação de sólidos, e então parte era bombeada para coleta de amostras.

Funcionamento do Filtro Biológico Percolador: O efluente de reator UASB era bombeado e distribuído no topo do filtro biológico percolador, segundo o hidrograma que confere vazões variáveis ao longo do dia. O esgoto tinha, então, um fluxo descendente através do compartimento de reação que continha o meio suporte (escória de alto forno) e era coletado, finalmente, no compartimento de decantação. No decantador, os sólidos desgarrados do biofilme, ou não retidos no meio suporte pelos mecanismos de filtração e adsorção, eram removidos do efluente final que saía pela parte superior do decantador.

4.4 Condições Operacionais da Planta Piloto

O reator UASB já vinha sendo operado há aproximadamente 5 anos, conseqüentemente, já adaptado ao esgoto sanitário em tratamento. Em relação à partida do filtro biológico percolador, foi adotado um protocolo de aumento progressivo da taxa de aplicação hidráulica e da carga orgânica, como mostrado na TAB. 4.5. A pesquisa incluiu a investigação de oito fases operacionais, cada uma com diferentes taxas hidráulicas e cargas orgânicas aplicadas ao filtro biológico percolador. Ao longo do período experimental, as características operacionais do reator UASB foram mantidas constantes, sendo operado com um tempo de detenção hidráulica médio de 4 horas (velocidade ascensional média igual a 1,4 m/h e vazão média igual a 100 L/h).

TABELA 4.5 - Principais características operacionais do Filtro Biológico Percolador

E	Compa	rtimento de rea	Compartimento de decantação *			
Fases	Taxa de aplicação superficial	Carga orgânica volumétrica		Taxa de aplicação superficial	Tempo de detenção hidráulica	
	(m ³ /m ² .d)	(kgDBO/m ³ .d)	(kgDQO/m ³ .d)	(m ³ /m ² .d)	(h)	
I	3,4	0,3	0,9	3,4	1,05	
II	6,8	0,7	1,0	6,8	0,53	
III	10,2	0,8	1,7	10,3	0,35	
IV	13,6	0,9	1,6	13,7	0,26	
V**	13,6	0,8	2,1	13,7	1,50	
VI	17,0	1,4	2,7	17,1	1,20	
VII	20,4	2,0	3,7	20,4	1,00	
VIII	30,6	3,9	5,6	30,6	0,67	

^{*} Durante as fases I a IV, a planta operou com a configuração do decantador acoplado ao filtro biológico percolador (ver FIG. 4.12). Para as fases V a VIII, a planta operou com a configuração do decantador externo ao filtro biológico percolador (ver FIG. 4.13).

A TAB. 4.6 apresenta o regime hidráulico e o período operacional de cada fase da pesquisa.

^{**} A fase V se diferencia da fase IV apenas em relação ao compartimento de decantação, que passou a ser externo ao corpo do filtro biológico e teve seu volume aumentado para 60 litros.

TABELA 4.6 - Regime hidráulico e período operacional em cada fase da pesquisa

						Fases				
		I	II	Ш	IV	**	V	VI	VII	VIII
Duração da Fase (d)		90	60	56	53	32	49	74	44	35
Regime hidráulico *	UASB	p.	t.	t.	t.	i.	t.	t.	t.	t.
	FBP	p.	t.	t.	t.	i.	t.	t.	t.	t.
Vazão média (L/h)	UASB	100	100	100	100	100	100	100	100	100
	FBP	10	20	30	40	40	40	50	60	90

^{*} p. – permanente t. – transiente i. – intermitente

No período em que ocorreram as falhas na automação da elevatória de esgotos, fazendo com que a planta trabalhasse em regime hidráulico intermitente, as unidades foram alimentadas, diariamente, no intervalo de 8:00 às 18:00.

4.5 Monitoramento do Sistema UASB/FBP

4.5.1. Parâmetros físico-químicos

O sistema UASB/FBP foi monitorado por um período de 16 meses, tendo sido avaliados os seguintes parâmetros físico-químicos: temperatura, pH, alcalinidade, ácidos voláteis, DQO total e filtrada, DBO total e filtrada, sólidos suspensos e totais, nitrogênio e fósforo, produção de biogás e teor de metano. Todas as análises foram realizadas de acordo com o Standard Methods for the Examination of Water and Wastewater, 20ª ed. (AWWA/APHA/WEF, 1998). A freqüência das análises variou de 2 a 3 vezes por semana, com exceção da temperatura que foi monitorada *on line* pelo sistema de automação. Algumas análises, como pH e oxigênio dissolvido, foram realizadas *in loco*, através de aparelhos portáteis, normalmente no período entre 8:00 e 9:00. Há que

^{**} Nesse período, os resultados não foram avaliados, uma vez que representa uma condição operacional atípica em relação às demais fases, quando o sistema foi operando em regime hidráulico intermitente, devido a falhas no sistema de alimentação da planta.

destacar que a temperatura foi monitorada *in loco*, através de aparelho portátil, durante a fase I e para as medidas do afluente ao reator UASB.

Para a coleta de amostras, foi utilizada uma bomba peristáltica (Masterflex[®], modelo 7521-50 de 1 a 100 rpm, com quatro cabeças, modelo 7518-00). A bomba peristáltica de coleta também seguia o hidrograma típico de vazões, possibilitando a coleta de amostras compostas, proporcionais às vazões afluentes a cada unidade do sistema, em um período de 24 horas. Foram os seguintes os pontos de coleta:

- esgoto bruto, afluente ao reator UASB diretamente da caixa de distribuição;
- efluente do reator UASB, na caixa de passagem a montante das linhas de póstratamento;
- efluente do FBP/decantador, na caixa de passagem localizada na saída da linha 3 da planta de tratamento.

A coleta iniciava e terminava sempre no horário da manhã, entre 8:00 e 9:00 horas. O esgoto bombeado era coletado em recipientes (bombonas de plástico), que ficavam dentro de caixas de isopor com gelo, para refrigerar e preservar a amostra composta durante o período de 24 horas. A FIG. 4.14 mostra a bancada de instalação das bombas peristálticas de alimentação das linhas de tratamento e de coleta das amostras, bem como o detalhe dos recipientes coletores (bombonas).

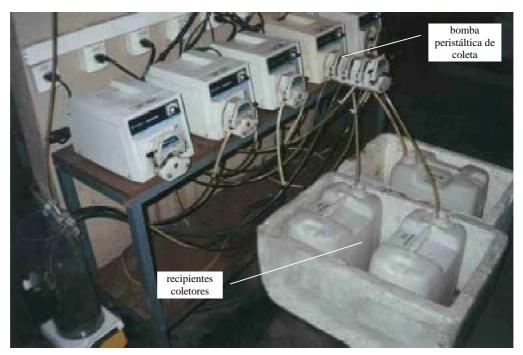


FIGURA 4.14 - Detalhe do Conjunto de bombas peristálticas e do aparato de amostragem

No final da coleta, as amostras armazenadas nas bombonas (volume total amostrado de cerca de 20 litros) eram transferidas para frascos de 1 litro, de vidro e plástico, sendo então transportadas para o laboratório de análises físico-químicas do DESA-UFMG.

Os resultados de sólidos totais foram obtidos a partir da amostragem do lodo ao longo da altura do reator UASB e nos pontos de descarte de lodo dos decantadores interno (fases I a IV) e externo (fases V a VIII) do filtro biológico percolador.

4.5.2. Parâmetros microbiológicos

Os parâmetros microbiológicos avaliados foram coliformes totais, *Escherichia coli* e ovos de helmintos. As análises bacteriológicas de coliformes totais e *E. coli* foram realizadas pela técnica de substrato cromogênico (Quantitray Colilert) e as análises parasitológicas de ovos de helmintos foram realizadas pelo método de BAILENGER

(1979), modificado por AYRES & MARA (1996). A contagem de ovos de helmintos era realizada utilizando-se uma câmara de McMaster com observação no microscópio em objetivas de 10x e 40x.

A freqüência de análises variou de 1 a 2 vezes por semana, sendo a amostragem composta no período de 9:00 às 12:00 horas. No final da coleta, as amostras eram transferidas para bombonas de plástico (5 e 10 litros) e transportadas para o laboratório de microbiologia do DESA-UFMG.

A TAB. 4.7 apresenta os métodos utilizados para a realização das análises e a TAB. 4.8 apresenta o programa de monitoramento da pesquisa.

TABELA 4.7 - Métodos utilizados para a realização das análises

Parâmetro	Método de análise	Equipamento
pН	Direto, potenciométrico	Medidor digital Dige-Sense 5938-10
Alcalinidade/Ácidos voláteis	Titulométrico	-
Temperatura	Direto, eletrodo de temperatura	Medidor digital mod 791 Cole Parmer
OD	Direto, eletrodo de oxigênio	YSI modelo 59
DBO	Titulométrico	Incubadora
DQO	Refluxo fechado	Reator de digestão Hach
Sólidos Suspensos	Gravimétrico	Estufa e mufla
Sólidos Totais	Gravimétrico	Banho maria, estufa e mufla
N-NTK	Digestão e Destilação	Digestor (K-314) e destilador (K-424) Bushi
N-NO ₃	Colorimétrico	Espectrofotômetro Hach DR2000
Fósforo	Colorimétrico	Espectrofotômetro Hach DR2000
Análise do biogás (CH ₄)	Cromatografia gasosa	Cromatógrafo Auto System XL Perkin Elmer
Coliformes fecais	Substrato cromogênico	Seladora e estufa
Ovos de helmintos	BAILENGER (1979), modificado por AYRES & MARA (1996)	Centrifuga, câmara de McMaster, microscópio Olympus (10x e 40x)

TABELA 4.8 - Programa de monitoramento do sistema UASB/FBP

Parâmetro	r	eator UASB]	FBP
	Afluente	Reator	Efluente	Reator	Efluente
pH	4-5/semana	-	4-5/semana	-	4-5/semana
Alcalinidade e Ácidos Voláteis	2/semana	-	2/semana	-	2/semana
Temperatura ⁽¹⁾	4-5/semana	-	4-5/semana	-	4-5/semana
OD	-	-	-	-	4-5/semana
DBO bruta	1/semana	-	1/semana	-	1/semana
DBO filtrada	1/semana	-	1/semana	-	1/semana
DQO bruta	2/semana	-	2/semana	-	2/semana
DQO filtrada	2/semana	-	2/semana	-	2/semana
Sólidos Suspensos	2/semana	-	2/semana	-	2/semana
Sol. Suspensos Voláteis	2/semana	-	2/semana	-	2/semana
Sólidos Totais (lodo)	-	1/mês ⁽²⁾	-	(3)	-
N-NTK	1/mês	-	1/semana	-	1/semana
N-NO ₃	1/mês	-	1/semana	-	1/semana
Fósforo total	1/mês	-	1/mês	-	1/mês
Análise biogás (CH ₄) ⁽⁴⁾	-	2/mês	-	-	-
Coliformes fecais ⁽⁵⁾	2/semana	-	2/semana	-	2/semana
Ovos de helmintos ⁽⁵⁾	1/quinzena	-	1/quinzena	-	1/quinzena

⁽¹⁾ Além das análises on line, foram realizadas análises pontuais in loco no início e final de cada coleta.

4.6 Produção de sólidos no reator UASB e no Filtro Biológico Percolador

O balanço estimado de sólidos no sistema UASB/FBP foi realizado conforme a seqüência de cálculo descrita a seguir. Para os cálculos das massas de sólidos totais e os coeficientes de produção de sólidos foram utilizadas as equações 4.2 a 4.15. Para os cálculos relacionados com sólidos voláteis (biomassa), basta substituir a concentração de sólidos suspensos totais (X) pela concentração de sólidos voláteis (Xv).

⁽²⁾ Eram coletadas amostras em 7 pontos de amostragem ao longo da coluna do reator UASB.

⁽³⁾ Durante as fases I a IV, foram coletadas amostras no registro de descarte de lodo do decantador, duas vezes por semana. Durante as fases V a VIII, foram coletadas amostras no registro de descarte de lodo do decantador e do sobrenadante, três vezes por semana.

⁽⁴⁾ Devido a alguns problemas com o cromatografo, as análises para determinação do ter de metano (CH_4) no biogás foram realizadas somente durante as fases I a IV.

⁽⁵⁾ Os parâmetros microbiológicos foram avaliados a partir da fase VI, quando iniciou outra pesquisa no LIP, avaliando a desinfecção do efluente do filtro biológico percolador através de um foto-reator com ultravioleta.

4.6.1 Cálculo dos coeficientes de produção total de sólidos

Os coeficientes de produção total de sólidos relacionam-se ao lodo descartado do sistema e aos sólidos perdidos com o efluente, e foram calculados por meio das equações 4.2 a 4.10.

$$Yt_{DQO_{apl}} = \underline{M_{St}}_{DQO_{apl}}, \text{ na qual:}$$

$$(4.2)$$

 $\begin{array}{ll} \text{Yt}_{\text{DQOapl}} &= \text{coeficiente de produção total de sólidos (gST/gDQO_{apl})} \\ \text{M}_{\text{St}} &= \text{massa total de sólidos produzidos no sistema (gST)} \\ \text{M}_{\text{DQOapl}} &= \text{massa de DQO aplicada ao sistema (gDQO)} \end{array}$

$$M_{St} = (Xd \times Vd) + (Qe \times Xe \times D)$$
, na qual: (4.3)

Xd = concentração de sólidos totais descartados durante cada fase operacional (gST/L)

Vd = volume descartado (L) Qe = vazão efluente (L/d)

Xe = concentração de sólidos suspensos efluente durante cada fase operacional (gSS/L)

D = duração da fase operacional (d)

$$M_{DQOapl} = Qa \times DQO_{afl} \times D$$
, na qual: (4.4)

Qa = vazão afluente (L/d)

 DQO_{afl} = concentração de DQO afluente (g/L) D = duração da fase operacional (d)

$$Yt_{DQO_{rem}} = \frac{M_{St}}{M_{DOO_{rem}}}$$
, na qual: (4.5)

Yt _{DQOrem} = coeficiente de produção total de sólidos (gST/gDQO_{rem})

 M_{DOOrem} = massa de DQO removida (gDQO)

$$M_{DQO_{rem}} = Qa \times (DQO_{afl} - DQO_{efl}) \times D$$
, na qual: (4.6)

Qa = vazão afluente (L/d)

 $\begin{array}{ll} DQO_{afl} &= concentração \ de \ DQO \ afluente \ (g/L) \\ DQO_{efl} &= concentração \ de \ DQO \ efluente \ (g/L) \\ D &= duração \ da \ fase \ operacional \ (d) \end{array}$

$$Yt_{DBO_{apl}} = M_{St} \over M_{DBO_{apl}}$$
, na qual: (4.7)

Yt _{DBOapl} = coeficiente de produção total de sólidos (gST/gDBO_{apl})

 M_{DBOapl} = massa de DBO aplicada (gDBO)

$$M_{DBOapl} = Qa \times DBO_{afl} \times D$$
, na qual: (4.8)

Qa = vazão afluente (L/d)

DBO_{afl} = concentração de DBO afluente (g/L) D = duração da fase operacional (d)

$$Yt_{DBO_{rem}} = M_{St} \over M_{DBO_{rem}}$$
, na qual: (4.9)

Yt _{DBOrem} = coeficiente de produção total de sólidos (gST/gDBO_{rem})

 M_{DBOrem} = massa de DBO removida (gDBO)

$$M_{DBO_{rem}} = Qa \times (DBO_{afl} - DBO_{efl}) \times D$$
, na qual: (4.10)

Qa = vazão afluente (L/d)

 $\begin{array}{ll} DBO_{afl} &= concentração \ de \ DBO \ afluente \ (g/L) \\ DBO_{efl} &= concentração \ de \ DBO \ efluente \ (g/L) \\ D &= duração \ da \ fase \ operacional \ (d) \end{array}$

4.6.2 Cálculo dos coeficientes de produção de lodo

Os coeficientes de produção de lodo relacionam-se ao lodo descartado do sistema, e foram calculados por meio das equações 4.11 a 4.18.

$$Yd_{DQO_{apl}} = M_{Sd} \over M_{DQO_{apl}}$$
, na qual: (4.11)

 $Yd_{DQOapl} \qquad = coeficiente \ de \ produção \ de \ lodo \ (gST/gDQO_{apl})$

 M_{Sd} = massa de sólidos descartada (gST)

$$M_{Sd} = (Xd \times Vd)$$
, na qual: (4.12)

Xd = concentração de sólidos totais descartados durante cada fase operacional (gST/L)

Vd = volume descartado (L)

$$Yd \qquad M_{Sd} \qquad (4.13)$$

$$DQO_{rem} = \frac{M_{DQO_{rem}}}{M_{DQO_{rem}}}$$

$$Yd_{DBO_{apl}} = \underline{M_{Sd}}_{DBO_{apl}}$$

$$(4.14)$$

Yd _{DBOapl} = coeficiente de produção de lodo (gST/gDBO_{apl})

$$Yd_{DBOrem} = \underline{M_{Sd}}_{DBOrem}$$

$$(4.15)$$

Yd _{DBOrem} = coeficiente de produção de lodo (gST/gDBO_{rem})

4.7 Balanço de conversão de DQO no reator UASB

A estimativa do balanço de conversão de DQO em CH₄ e lodo foi realizada conforme a sequência de cálculo descrita a seguir. Segundo (CHERNICHARO, 1997) pode-se considerar que 70% da DQO particulada é hidrolisada e se transforma em DQO filtrada. Para os cálculos das taxas de produção de biogás, metano e lodo foram utilizadas as equações 4.16 a 4.20.

$$Q_{CH_4} = Q_{biog\acute{a}s} \ x \ \% CH_4 \quad \text{, na qual:} \tag{4.16}$$

 $\begin{array}{ll} Q_{CH4} & = produção \ volumétrica \ de \ metano \ (m^3/d) \\ Q_{biogás} & = produção \ volumétrica \ de \ biogás \ (m^3/d) \end{array}$

%CH₄ = teor de metano no biogás (%)

$$DQO_{CH_4} = Q \times (DQOf_{rem} - Y_{obs} \times DQOf_{rem})$$
, na qual: (4.17)

 DQO_{CH4} = carga de DQOf removida e convertida em CH_4 (gDQO/d)

Q = vazão (L/d)

Y_{obs} = coef. de produção de sólidos (gDQO_{lodo}/gDQO_{rem})

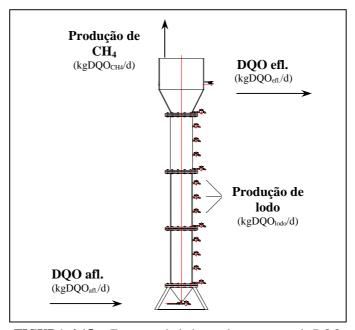
DQOf_{rem} = concentração de DQO filtrada removida

$$DQOf_{rem} = (DQOp \times 0.70 + DQOf_{afl}) - DQOf_{efl}) , na qual:$$
 (4.18)

DQOp = concentração de DQO particulada no afluente (g/L)

 $\begin{array}{ll} DQOf_{afl} & = concentração \ de \ DQO \ filtrada \ afluente \ (g/L) \\ DQOf_{efl} & = concentração \ de \ DQO \ filtrada \ efluente \ (g/L) \end{array}$

Considerando-se que para um percentual de 70% de SSV em relação a SST, tem-se a seguinte relação para DQO do lodo: 1,14 KgDQO_{lodo}/KgSST (CHERNICHARO, 1997). Calculando o Y_{obs} pela equação 4.19.


$$Y_{\text{obs}} = Yt_{\text{DQOrem}} \times 1{,}14$$
, na qual: (4.19)

 $\begin{array}{ll} \text{Yt}_{\text{DQOrem}} &= \text{coeficiente de produção total de s\'olidos (gST/gDQO}_{\text{rem}}) \\ &\quad \text{calculado de acordo com a equação 4.5} \end{array}$

$$P_{lodo} = DQOf rem - DQO_{CH_4}$$
, na qual (4.20)

P lodo = produção de lodo (kgDQO_{lodo}/d)

A FIG. 4.15 apresenta a configuração esquemática do balanço de conversão de DQO em produção de metano e produção de lodo.

FIGURA 4.15 - Esquema do balanço de conversão de DQO

4.8 Análise dos dados

As tabelas e os gráficos foram elaborados utilizando os programas *Microsoft*[®] *Excel* 2000 e *Statistica*[®]. O programa *Statistica*[®] permitiu a elaboração dos gráficos tipo Box-Whisker, os quais apresentam as características de um conjunto de dados, como: dispersão, simetria ou assimetria e observação de dados discrepantes com valores de máximo e mínimo.

5. RESULTADOS E DISCUSSÃO

5.1 Preliminares

A pesquisa foi realizada ao longo de um período de 16 meses, sendo dividida em 8 fases operacionais caracterizadas de I a VIII. A TAB. 5.1 resume cada fase com seu respectivo período operacional, sendo que as principais características operacionais de cada fase são apresentadas na TAB 4.5.

TABELA 5.1 - Resumo das fases com seu respectivo período operacional

Fases	Período operacional	Dias operacionais	Total de dias
I	27/abril/1999 a 25/julho/1999	01 a 90	90
II	26/julho/1999 a 23/setembro/1999	91 a 150	60
III	24/setembro/1999 a 18/novembro/1999	151 a 206	56
IV	19/novembro/1999 a 10/janeiro/2000	207 a 259	53
*	11/janeiro/2000 a 11/fevereiro/2000	260 a 291	32
V	12/fevereiro/2000 a 31/março/2000	292 a 340	49
VI	01/abril/2000 a 13/junho/2000	341 a 414	74
VII	14/junho/2000 a 27/julho/2000	415 a 458	44
VIII	28/julho/2000 a 31/agosto/2000	459 a 493	35

^{*} Nesse período, os resultados não foram avaliados, uma vez que representa uma condição operacional atípica em relação às demais fases, quando o sistema foi operando em regime hidráulico intermitente, devido a falhas no sistema de alimentação da planta.

O resumo dos resultados médios obtidos em cada fase operacional da planta piloto, bem como os resultados estatísticos básicos, são mostrados na TAB. 5.2, enquanto os resultados diários dos parâmetros monitorados são apresentados nos anexos. A TAB. 5.3 mostra os valores das eficiências médias obtidas para cada fase operacional, em termos de remoção de DQO e DBO.

TABELA 5.2 - Resumo dos parâmetros físico-químicos e resultados estatísticos básicos durante o período operacional

			I A	BELA	5.2 -	Res	sumo do	s parân	netros	tisico-q	uímicos	e resu	Itados e	estatistic	cos bás	sicos du	rante o	períod	o operac	cional				
		Fase I			Fase II		F	ase III]	Fase IV			Fase V		1	Fase VI		F	ase VII		F	ase VIII	
Parâmetros	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.
	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB
méd	a 666	234	175	571	131	80	470	143	94	477	100	59	420	128	64	446	136	94	487	155	113	550	156	113
máxim		960	792	1035	234	156	769	269	223	898	203	161	629	191	113	659	207	140	693	223	163	873	265	185
DQOt mínim	o 180	48	14	351	22	13	314	54	31	287	37	11	251	77	14	286	65	49	381	91	81	447	83	62
(mg/L) D	P 344	227	192	202	50	39	99	60	60	185	50	35	90	41	27	104	37	31	94	40	29	130	57	39
C	V 0,52	0,97	1,10	0,35	0,38	0,49	0,21	0,42	0,64	0,39	0,49	0,59	0,21	0,32	0,43	0,23	0,27	0,33	0,19	0,26	0,26	0,24	0,37	0,35
	n 25	25	25	18	18	18	16	16	16	14	14	14	14	14	14	21	21	21	10	10	10	9	9	9
méd	a 362	96	68	208	71	45	179	62	48	152	43	32	168	60	44	174	61	50	186	82	61	207	74	58
máxim		230	182	358	132	89	277	179	190	246	95	61	275	96	68	336	128	127	236	149	126	356	93	112
DQOf mínim	о 10	10	10	57	10	7	103	28	15	56	12	8	55	22	11	101	21	15	108	30	23	155	44	29
(mg/L) D		54	40	81	27	19	49	40	42	62	20	14	58	22	20	63	29	31	40	38	31	68	19	25
C		0,56	0,59	0,39	0,38	0,44	0,28	0,65	0,87	0,41	0,46	0,45	0,35	0,37	0,46	0,36	0,48	0,61	0,22	0,46	0,51	0,33	0,26	0,43
	n 24	24	24	18	18	18	16	16	16	14	14	14	14	14	14	21	21	21	10	10	10	9	9	9
méd	a 263	71	31	327	83	32	248	63	22 35	294	56	19	231	52	17	268	69	32	305	85	57	256	108	52
máxim		166	56	515	149	61	327	122	35	539	134	46	328	98	39	367	101	72	320	108	66	300	130	66
DBOt mínim			9	223	47	14	154	31	6	113	35	8	132	34	6	190	30	14	291	64	48	218	91	34
(mg/L) D		36	15	105	32	15	64	30	10	154	38	14	68	22	11	58	24	20	12	17	8	34	16	12
C			0,48	0,32	0,38	0,48	0,26	0,48	0,48	0,52	0,68	0,75	0,29	0,43	0,63	0,22	0,35	0,62	0,04	0,20	0,14	0,13	0,15	0,23
	n 13		13	9	9	9	8	8	8	6	6	6	7	7	7	10	10	10	5	5	5	5	5	5 20
méd			11	153	27	13	130	22	8	135	18	8	123	19	8	165	30	14	158	30	18	117	31	20
máxim		43	28	282	49	20	180	67	14	199	31	17	168	29	13	281	60	29	197	44	21	157	36	25
DBOf mínim		10	1	51	19	6	72	10	5	77	8	4	89	10	4	86	12	3	138	21	14	61	23	16
(mg/L) D			7	63	9	5	35	19	3	44	8	5	28	8	3	79	16	9	23	8	3	36	6	4
C			0,63	0,41	0,32	0,41	0,27	0,87	0,37	0,33	0,44	0,58	0,23	0,41	0,40	0,48	0,56	0,62	0,15	0,28	0,16	0,31	0,18	0,20
(1)	n 12		13	9	9	9	8	8	8	6	6	6	7	/	/	10	10	10	5	5	5	5	5	5
méd			15	104	33	11	128	43	26	126	28	18	107	33	14	125	42	26	133	68	36	144	49	28
máxim			39 2	308	127	36	194	116	55	270	63	63	232	62	44	180	74 25	63	222	152	72	204	78	47
SST mínim (mg/L) D		9	_	42 57	5	1	72 25	19	15	28	3	10	36	18	11	90	25 14	13	84	34	22 14	110	21	15
(mg/L) D			11		27 0,83	8 0,79	35 0,28	25 0,59	15 0,61	75	16	18 0,96	56 0,52	14 0,43	11 0,80	26		13	40 0,30	33 0,50	0,39	33	17	10
C	n 0,37	0,48 26	0,70 26	0,55 18	18	18	16	16	16	0,59 14	0,58 14	14	14	14	14	0,21 21	0,33 21	0,47 21	0,30	11	11	0,23 10	0,35 10	0,35 10
méd	_		12	90	24	8	112	35	22	102	21	14	91	26	12	108	35	21	105	56	28	110	41	23
máxim			33	268		35	168	88	48	252		48	186	44	38				180	120	57		67	39
SSV mínim		8	33	30	95 3	0	64	9	40	12	50 2	3	32	44	30	166 70	60 22	52 10	54	31	51	158 64	20	39 11
(mg/L) D			0	51	22	8	28	20	14	72	14	14	46	12	11	24	11	11	34	26	14	34	15	10
(IIIg/L) D			0,70	0,56	0,90	1,01	0,25	0,57	0,66	0,71	0,66	1,03	0,50	0,49	0,89	0,22	0,30	0,49	0,32	0,46	0,51	0,31	0,36	0,44
C	n 0,33		26	18	18	1,01	16	16	16	14	14	1,03	14	14	14	21	21	21	11	11	11	10	10	10
méd	_		7,28	6,31	6,52	7,28	6,29	6,50	7,41	6,32	6,36	7,16	6,21	6,31	7,07	6,32	6,35	7,16	6,62	6,61	7,34	6,56	6,57	7,27
máxim	,	7,00	7,28	6,81	7,10	7,68	6,70	7,03	7,41	6,68	6,74	7,10	6,74	6,62	7,07	7,60	6,90	7,10	6,98	6,93	7,73	7,17	7,06	7,82
mínim			6,40	5,61	5,55	6,49	5,59	6,08	7,98	5,80	5,95	6,58	5,58	5,93	6,80	5,79	5,86	6,84	6,27	6,21	6,53	5,94	6,10	6,48
pH IIIIIIII		0,00	0,40	0,25	0,25	0,30	0,27	0,08	0,25	0,28	0,22	0,38	0,29	0,16	0,30	0,36	0,25	0,34	0,27	0,21	0,29	0,31	0,10	0,48
C		0,23	0,28	0,23	0,23	0,04	0,04	0,03	0,23	0,28	0,03	0,03	0,29	0,10	0,13	0,06	0,23	0,03	0,22	0,03	0,29	0,05	0,20	0,04
C	n 0,03		37	40	40	40	32	32	32	26	26	26	26	26	26	39	39	39	23	23	23	20	20	20
	37	51	31	70	70	70	32	34	32	20	20	20	20	20	20	3)	3)	3)	23	23	23	20	20	

TABELA 5.2 (CONTINUAÇÃO) Resumo dos parâmetros físico-químicos e resultados estatísticos básicos durante o período operacional

	Ī					orry.			puru			Г				_				o opera			X7777	
D		Fase I	~		Fase II			ase III	~		Fase IV			ase V	~		Fase VI	~		ase VII	~		ase VIII	
Parâmetros	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.	afl.	efl.	efl.
	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB	UASB	UASB	FB
média	20,7	20,3	19,9	20,8	21,0	20,7	21,3	22,7	22,2	23,8	24,5	23,7	24,6	24,9	24,1	22,0	22,5	21,8	20,2	21,0	20,2	21,4	21,5	20,8
máximo	24,6	23,6	23,0	24,6	25,7	25,6	25,7	25,8	25,9	28,5	28,1	30,3	26,5	27,6	29,5	24,9	26,9	26,1	22,5	23,6	23,0	25,9	26,0	25,2
T mínimo	17,8	17,7	17,2	15,6	15,8	15,6	18,0	19,8	17,8	20,5	20,2	17,8	22,9	21,9	20,3	19,3	17,2	14,0	16,6	16,2	13,3	17,6	17,7	14,0
(°C) DP	1,82	1,49	1,32	2,38	2,30	2,22	1,86	0,90	1,06	1,90	1,18	1,02	0,86	0,84	0,92	1,48	1,64	1,54	1,86	0,80	1,01	1,81	1,11	1,58
* CV	0,09	0,07	0,07	0,11	0,11	0,11	0,09	0,04	0,05	0,08	0,05	0,04	0,03	0,03	0,04	0,07	0,07	0,07	0,09	0,04	0,05	0,08	0,05	0,08
n	37	37	37	35	40	40	30	38	38	26	41	41	24	37	37	39	70	70	22	42	42	20	35	35
média	151	195	178	161	200	179	159	211	192	153	190	173	152	204	193	168	204	195	195	228	223	205	228	220
máximo	185	293	289	217	230	198	210	252	237	228	225	200	176	287	236	199	312	290	224	335	341	220	249	243
Alcal. mínimo	118	109	65	132	168	146	132	182	145	123	147	138	119	155	149	135	164	129	159	190	177	190	204	186
(mg/L) DP	18	51	53	25	17	13	19	21	24	29	28	22	15	37	28	17	35	36	22	39	43	10	16	18
CV	0,12	0,26	0,30	0,16	0,09	0,07	0,12	0,10	0,12	0,19	0,14	0,13	0,10	0.18	0,15	0,10	0,17	0,18	0,11	0,17	0,19	0,05	0.07	0,08
n	25	25	25	19	19	19	16	16	16	11	11	11	13	13	13	19	19	19	11	11	11	9	9	9
média	101	46	40	82	43	37	84	45	43	74	46	46	112	73	68	100	60	58	82	28	21	75	28	19
máximo	187	90	88	150	110	68	149	91	69	135	100	100	193	142	121	174	184	175	182	76	37	107	49	28
AGV mínimo	15	19	12	12	12	20	37	27	24	29	22	24	33	23	23	42	21	25	24	12	13	30	18	12
(mg/L) DP	46	20	17	36	26	16	33	16	15	33	20	21	52	35	33	38	39	34	44	18	7	27	10	5
CV	0,46	0,44	0,44	0,43	0,60	0,43	0,39	0,36	0,35	0,45	0,44	0,46	0,46	0,48	0,50	0,38	0,65	0,59	0,53	0,65	0,34	0,36	0,34	0,26
n	25	25	24	19	19	18	16	16	16	11	11	11	13	13	13	19	19	19	11	11	11	9	9	9
média	38,4	48,9	42,0	35,5	39,8	35,3	37,7	48,3	43,1	36,8	42,3	38,2	34,0	37,2	35,1	36,2	38,4	38,1	41,8	43,9	42,4	39,6	36,4	35,8
máximo	39,3	56,5	56,5	40,2	44,7	44,7	40,2	58,7	60,6	37,3	50,4	49,8	37,3	46,5	46,0	42,8	58,9	60,8	51,0	58,8	57,7	42,1	42,1	38,0
NTK mínimo	37,4	35,0	27,0	30,9	36,4	28,5	35,1	36,2	28,2	36,4	36,1	29,4	30,6	20,7	21,4	31,0	31,0	20,5	35,7	34,6	28,8	37,6	31,2	33,5
(mg/L) DP	1,3	7,6	10,1	6,6	2,8	4,6	3,6	7,8	9,6	0,6	5,0	7,9	4,7	9,8	10,8	4,9	7,9	10,7	6,5	8,5	9,6	2,1	4,6	1,8
CV	0,03	0,16	0,24	0,19	0,07	0,13	0,10	0,16	0,22	0,02	0,12	0,21	0,14	0,26	0,31	0,14	0,21	0,28	0,16	0,19	0,23	0,05	0,13	0.05
n	2	9	9	2	9	9	2	8	8	2	6	6	2	7	7	4	11	11	5	6	6	4	4	4
média	0,1	0,1	3,0	0,2	0,2	9,8	0,4	0,2	7,9	0,9	0,4	5,9	0,7	0,9	1,3	0,2	0,4	1,4	0,6	0,5	1,0	0,8	0,4	0,7
máximo	0,1	0,4	9,6	0,3	0,4	19,0	0,4	0,4	13,0	1,4	0,9	7,0	1,1	2,0	3,3	0,3	0,8	3,5	0,7	0,7	1,5	1,3	0,6	1,2
NO ₃ mínimo	0,1	0,1	0,2	0,1	0,1	5,6	0.3	0,1	5,2	0,3	0,3	4,1	0,1	0,2	0,6	0,1	0,2	0,4	0,3	0,4	0,5	0,3	0,3	0,4
(mg/L) DP	0,0	0,1	3,4	0,1	0,1	4,1	0,3	0,1	3,1	0,8	0,3	1,2	0,4	0,6	0,9	0,1	0,2	1,1	0,2	0,1	0,4	0,7	0,1	0,3
CV	0,00	0,71	1,16	0,71	0,67	0,42	0,20	0,60	0,40	0,92	0,59	0,20	0,53	0,64	0,72	0,71	0,54	0,77	0,31	0,19	0,37	0,88	0,31	0,46
n	3	17	17	2	9	9,42	2	7	7	2	5	5,20	5	8	8	2	9	9,77	4	6	6,37	2	5	5
média	3,6	5,3	4,7	4,9	4,9	4,7	3,3	3,9	3,0	5,1	5,7	5,8	2,7	3,0	2,8	2,7	2,9	2,5	4,3	3,9	4,0	4,1	4,1	3,9
máximo	4,6	6,4	6,1	6,2	6,6	5,9	4,7	5,5	4,1	6,7	7,1	7,1	2,7	3,5	3,2	3,5	3,2	2,5	5,8	4,8	5,5	4,2	4,1	3,9
P mínimo	2,5	4,2	3,3	3,6	3,2	3,5	2,0	2,4	2,0	3,5	4,2	4,5	2,4	2,4	2,3	1,9	2,6	2,3	2,8	2,9	2,5	3,9	4,0	3,8
(mg/L) DP	1,1	1,1	1 4	1,9	2,4	1,7	2,0	2,4	1,5	2,3	2,0	1,8	0,3	0,8	0,6	1,9	0,4	0,2	2,8	1,4	2,3	0,2	0,2	0,1
(IIIg/L) DP	0,30		0,30	0,39	0,49	0,37	0,59	0,56	0,49	0,45	0,36	0,31		,		0,43	0,4	0,2	0,50	0,36	0,53	0,04	0,2	0,02
CV	0,30	0,21	0,50	0,39	0,49	0,37	0,59	0,36	0,49	0,45	0,36	0,31	0,13	0,28	0,23	0,43	0,14	0,08	0,50	0,36	0,33	0,04	0,04	0,02
		3	3			2			2			2			Z			2			2			

Nota: * Temperatura (medida pontual durante a Fase I e para o afl. UASB, medida on line para o efl. UASB e efl. FB nas demais Fases)
Alcal. = alcalinidade

TABELA 5.3 - Resumo das eficiências médias obtidas para cada fase operacional em termos de DQO e DBO

Fases	Eficiência	UASB (%)	Eficiência	a FBP (%)	Eficiência Global (%)			
	DQO	DBO	DQO	DBO	DQO	DBO		
I	65	73	25	56	74	88		
II	77	75	39	63	86	90		
III	70	75	34	66	80	91		
IV	79	81	41	66	88	94		
V	69	78	50	67	85	93		
VI	70	74	31	53	79	88		
VII	68	72	26	32	77	81		
VIII	72	58	28	52	79	80		

5.2 Resultados de DQO ao longo do período operacional

A FIG. 5.1 mostra a variação da concentração de DQO total ao longo das fases operacionais. Observa-se que há uma grande variação da DQO do esgoto afluente ao reator UASB, com valor mínimo de 180 mgDQO/L e máximo de 1369 mgDQO/L, sendo que a fase I foi a que apresentou maior desvio padrão (337 mgDQO/L) e maior coeficiente de variação (0,52), conforme mostrado na TAB. 5.2.

Observa-se pela FIG. 5.1 que tanto o reator UASB quanto o filtro biológico percolador foram capazes de amortecer grande parte da variação da concentração de DQO afluente, como também uniformizar, com variações mais suaves, as concentrações do efluente, mesmo durante as fases VII e VIII, quando o filtro biológico percolador foi exposto a taxas de aplicação hidráulica superiores a 20 m³/m².d.

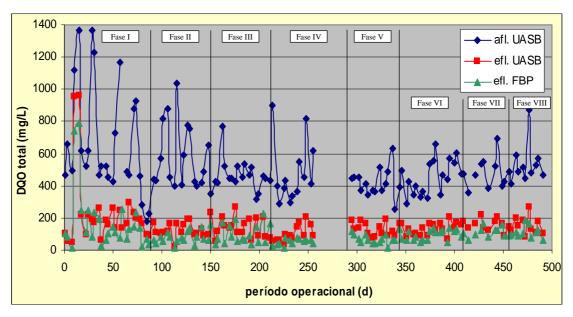


FIGURA 5.1 - Variação da concentração de DQO ao longo do período operacional

O conjunto dos resultados de DQO, afluente e efluente do reator UASB e efluente do filtro biológico percolador, obtidos durante as fases operacionais, são representados pelas FIG. 5.2 a 5.4, respectivamente. Observa-se, pela FIG. 5.2 e TAB. 5.3, que as concentrações de DQO do esgoto afluente ao reator UASB, nas diversas fases operacionais, tiveram valores mínimos compreendidos entre 180 e 447 mgDQO/L, enquanto as concentrações máximas variaram de 629 a 1369 mgDQO/L. As concentrações médias estiveram compreendidas entre 420 e 666 mgDQO/L, com média global igual a 511 mgDQO/L.

Apesar do efluente do reator UASB ter apresentado um valor máximo de 960 mg/L na primeira fase, observa-se pela TAB. 5.2 que ao longo do período operacional as concentrações médias variaram entre 100 e 234 mg/L, com valor médio global de 154 mgDQO/L.

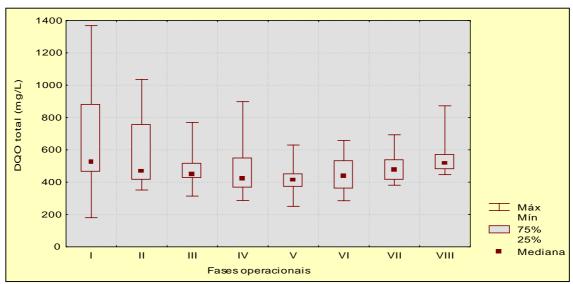


FIGURA 5.2 - Resultados Box-Whisker para a concentração de DQO afluente ao reator UASB

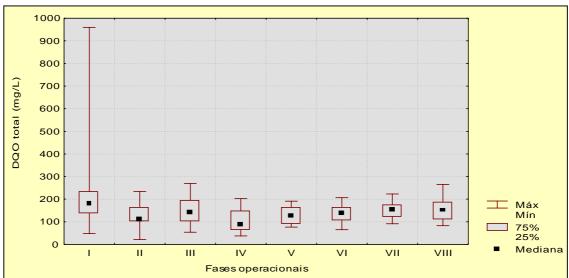


FIGURA 5.3 - Resultados Box-Whisker para a concentração de DQO efluente do reator UASB

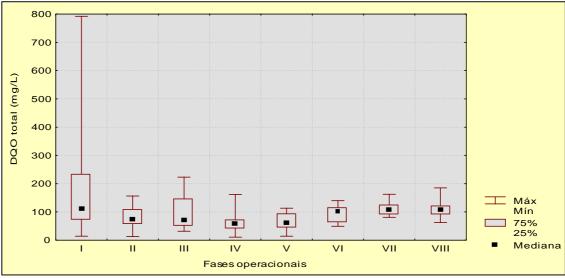


FIGURA 5.4 - Resultados Box-Whisker para a concentração de DQO efluente do FBP

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

O mesmo pode se dizer em relação ao efluente do filtro biológico percolador, que na primeira fase apresentou um valor máximo de 792 mgDQO/L e para as demais fases apresentou concentrações médias variando entre 59 e 114 mgDQO/L. Observa-se que ocorreu maior dispersão dos resultados durante as fases I a IV, provavelmente devido a um ou mais dos seguintes fatores: i) biofilme ainda em formação; ii) baixos tempos de detenção hidráulica do decantador; e iii) pequena altura do filtro biológico percolador.

Embora o desempenho do filtro biológico percolador durante a fase I (partida do sistema) possa ser considerado bom, a alta concentração de DQO do esgoto bruto afluente ao reator UASB contribuiu para uma baixa eficiência global do sistema. Durante a fase I, o reator UASB foi capaz de produzir um efluente com concentração média de 234 mgDQO/L, enquanto a concentração média no efluente final do filtro biológico percolador foi de 175 mgDQO/L. Nessa fase, as cargas orgânicas aplicadas foram da ordem de 4,0 kgDQO/m³.d, no reator UASB, e 0,9 kgDQO/m³.d, no filtro biológico percolador. A eficiência global de remoção de DQO foi da ordem de 74%.

Observa-se pela TAB. 5.3 que, para as demais fases, a concentração média de DQO no efluente do reator UASB variou entre 100 e 156 mg/L. Embora o reator UASB tenha apresentado eficiências muito elevadas em termos de remoção de DQO total, acima de 70% em quase todas as fases, foi observado que o filtro biológico percolador promoveu uma remoção complementar de matéria carbonácea, elevando a eficiência global do sistema UASB/FBP para valores em torno de 80%, durante o período operacional (ver TAB. 5.3). Estas eficiências de remoção foram obtidas apesar das grandes variações da concentração de DQO no esgoto bruto.

As maiores eficiências de remoção de matéria orgânica e os efluentes de melhor qualidade foram obtidos nas fases II a VI, quando o filtro biológico percolador foi operado com taxas de aplicação hidráulica e cargas orgânicas volumétricas que variaram entre 6,8 e 17,0 m³/m².d e entre 1,0 e 2,7 kgDQO/m³.d. Para essas condições operacionais, o filtro biológico foi capaz de produzir um efluente final de ótima qualidade, com concentrações médias de DQO variando entre 60 e 94 mgDQO/L (ver TAB. 5.).

As menores eficiências e piores qualidades do efluente foram observadas durante as fases VII e VIII, quando o filtro biológico percolador foi exposto a taxas de aplicação hidráulica e cargas orgânicas volumétricas muito altas (20,4 a 30,6 m³/m².d, 3,7 a 5,6 kgDQO/m³.d). No entanto, mesmo durante estas fases o sistema UASB/FBP foi ainda capaz de produzir um efluente final com concentrações ainda relativamente baixas de DQO (média de 113 mgDQO/L). A eficiência global do sistema ficou próxima a 80% em termos de remoção de DQO. As FIG. 5.5 e 5.6 ilustram, respectivamente, a variação das concentrações médias de DQO e os valores de eficiências de remoção de DQO ao longo das fases operacionais.

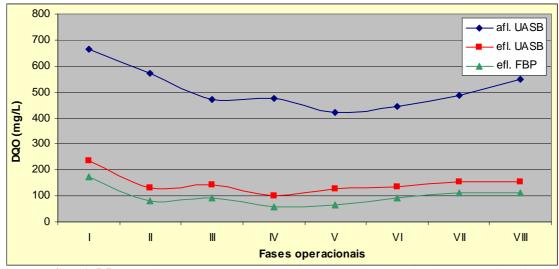


FIGURA 5.5 - Variação da concentração média de DQO ao longo das fases operacionais

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

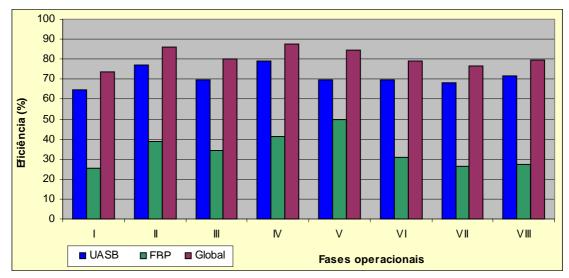


FIGURA 5.6 - Variação das eficiências médias de remoção de DQO ao longo das fases operacionais

5.3 Resultados de DBO ao longo do período operacional

A FIG. 5.7 mostra a variação da concentração de DBOt ao longo das fases operacionais. Nota-se, assim como foi observado para DQO, que também há uma grande variação da DBO do esgoto afluente ao reator UASB, com valor mínimo de 113 mg/L e máximo de 539 mg/L (ver TAB. 5.3).

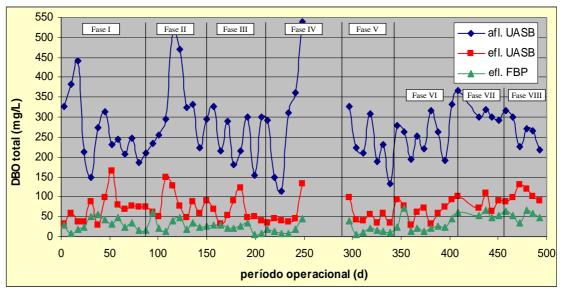


FIGURA 5.7 - Variação da concentração de DBO ao longo do período operacional

Observa-se pelas curvas características obtidas do efluente do reator UASB e do efluente do filtro biológico percolador, como as unidades de tratamento conseguem minimizar o efeito da variação das concentrações do esgoto afluente à planta. Pode-se observar, também, as baixas concentrações de DBO no efluente final, com concentrações médias variando durante as fases operacionais entre 17 e 57 mg/L (ver TAB. 5.).

Os resultados de DBO afluente e efluente do reator UASB e efluente do filtro biológico percolador, durante as fases operacionais, são apresentados pelas FIG. 5.8 a 5.10, respectivamente. Observa-se, pela FIG. 5.8 e TAB. 5. , que as concentrações de DBO do esgoto afluente ao reator UASB, nas diversas fases operacionais, tiveram valores mínimos compreendidos entre 113 e 291 mgDBO/L, enquanto as concentrações máximas variaram de 300 a 539 mgDBO/L. As concentrações médias estiveram compreendidas entre 231 e 327 mgDBO/L, com média global igual a 274 mgDBO/L.

Pode-se observar que, apesar do efluente do reator UASB ter apresentado maiores variações de concentração de DBO, principalmente durante as fases I a IV, o valor médio ao longo do período operacional foi de 72 mg/L de DBO. As menores concentrações de DBO efluente do reator UASB foram obtidas durante as fases III a V, período de setembro a março, quando as temperaturas do esgoto foram mais elevadas, com médias na faixa de 23 a 25 °C e máximas entre 26 °C e 28 °C (ver TAB. 5.3).

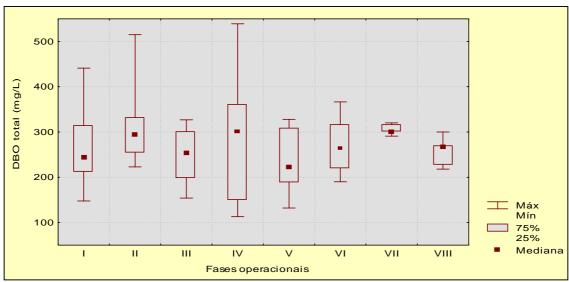


FIGURA 5.8 - Resultados Box-Whisker para a concentração de DBO afluente do reator UASB

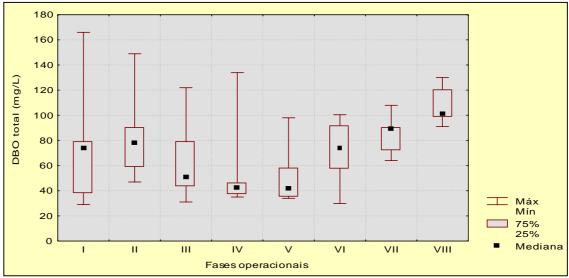


FIGURA 5.9 - Resultados Box-Whisker para a concentração de DBO efluente do reator UASB

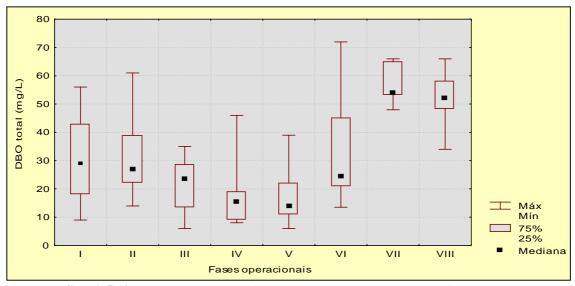


FIGURA 5.10 - Resultados Box-Whisker para a concentração de DBO efluente do FBP

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

O efluente do filtro biológico percolador também apresentou grandes variações de concentração de DBO durante as fases experimentais, com valores máximos variando entre 35 e 72 mg/L. As menores concentrações de DBO foram observadas nas fases IV e V, com valores médios de 19 e 17 mg/L, respectivamente (ver TAB. 5.3). Há que se relatar que, nessas fases, o filtro biológico percolador foi exposto às mesmas taxas de aplicação hidráulica de 13,6 m³/m².d e praticamente às mesmas cargas orgânicas volumétricas, que ficaram em torno de 0,9 kgDBO/m³.d. A diferença principal entre a fase IV e fase V foi em relação ao compartimento de decantação, que até a fase IV localizava-se na base do filtro biológico percolador e, a partir da fase V passou a ser externo ao corpo do filtro e teve seu volume aumentado para 60 litros. Também durante este período, as temperaturas do esgoto foram mais levadas, com valores médios e máximos próximos a 24 e 30 °C, respectivamente.

Em termos de remoção de matéria orgânica e melhor qualidade do efluente final, as fases II a VI foram as que obtiveram os melhores resultados, quando o filtro biológico percolador foi operado com taxas de aplicação hidráulica e cargas orgânicas volumétricas que variaram entre 6,8 a 17,0 m³/m².d e 0,7 a 1,4 kgDBO/m³.d. Para essas condições operacionais, o filtro biológico pôde produzir um efluente final de ótima qualidade, com concentrações médias de DBO entre 17 mg/L e 32 mg/L (ver TAB. 5.3).

Apesar do reator UASB ter apresentado eficiências de remoção de DBOt acima de 70%, em quase todas as fases, observa-se que o filtro biológico percolador também promoveu uma remoção complementar de matéria orgânica, elevando a eficiência global do sistema UASB/FBP para valores próximos a 90%, durante o período operacional.

Assim como foi observado para DQO, as menores eficiências e piores qualidades do efluente em termos de DBO também foram observadas durante as fases VII e VIII, quando o filtro biológico percolador foi exposto a taxas de aplicação hidráulica e cargas orgânicas volumétricas muito altas (20,4 a 30,6 m³/m².d e 2,0 a 3,9 kgDBO/m³.d). Todavia, mesmo para estas condições, o sistema UASB/FBP foi ainda capaz de produzir um efluente final com concentrações ainda relativamente baixas de DBO, média de 57 mg/L e 52 mg/L para as fases VII e VIII respectivamente. A variação das concentrações médias de DBO e os valores obtidos de remoção de DBO, ao longo das fases operacionais, são representados pelas FIG. 5.11 e 5.12, respectivamente.

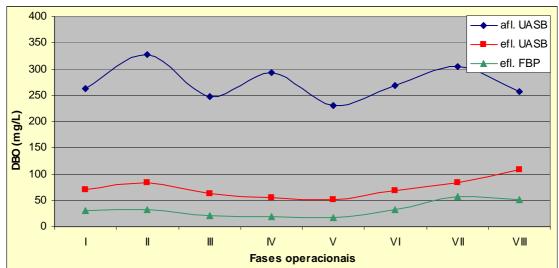


FIGURA 5.11 - Variação da concentração média de DBO ao longo das fases operacionais

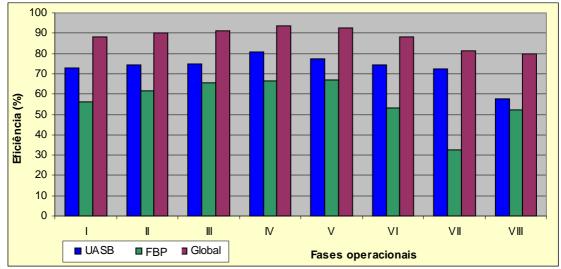
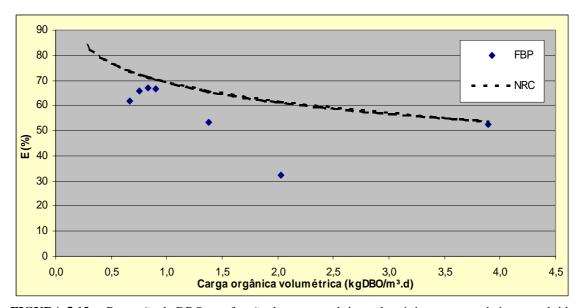



FIGURA 5.12 - Variação das eficiências médias de remoção de DBO ao longo das fases operacionais

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

Apesar das variações de concentração de DBO, os efluentes do reator UASB e do filtro biológico percolador se mostraram muito mais equalizados, com variações de concentração muita menores, principalmente no efluente do filtro biológico percolador. Neste, chama atenção os resultados médios bastante estáveis em termos de DBO, devendo-se destacar que em todas as fases a concentração média ficou abaixo de 60 mgDBO/L, mesmo quando o filtro foi submetido à taxa de aplicação hidráulica de 30,6 m³/m².d e à carga orgânica volumétrica de 3,9 kgDBO/m³.d.

A FIG. 5.13 apresenta os resultados de remoção de DBO, em função da carga orgânica volumétrica aplicada ao filtro biológico percolador, que pode ser comparada à curva obtida por meio do modelo do National Reserch Council - NRC (equação 3.2). Observase que os dados de eficiências obtidas na presente pesquisa apresentaram-se, sistematicamente, abaixo dos obtidos com o critério do NRC. Isso pode ser explicado porque o modelo do NRC foi desenvolvido para filtros biológicos percoladores de maior altura de meio suporte tratando efluentes primários.

FIGURA 5.13 - Remoção de DBO, em função da carga orgânica volumétrica, comparada à curva obtida por meio do modelo do NRC

5.4 Resultados de Sólidos Suspensos Totais ao longo do período operacional

A FIG. 5.14 representa a variação da concentração de SST ao longo do período experimental. Esses resultados seguem o mesmo padrão verificado para DQO e DBO, com grandes variações no afluente do reator UASB e um significativo amortecimento dos picos nos efluentes do reator UASB e do filtro biológico percolador.

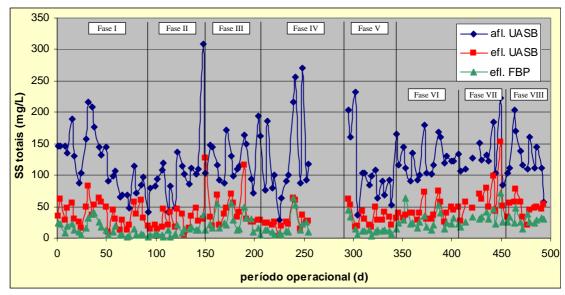


FIGURA 5.14 - Variação da concentração de SST ao longo do período operacional

As FIG. 5.15 a 5.17 mostram a variação dos valores de SST esgoto bruto e nos efluentes do reator UASB e do filtro biológico percolador, respectivamente, nas diversas fases operacionais. Observa-se, pela FIG. 5.15 e pela TAB. 5.3, que as concentrações de SST no esgoto bruto, ao longo do período experimental, tiveram valores mínimos compreendidos entre 28 e 110 mgSST/L, enquanto as concentrações máximas variaram entre 180 e 328 mgSST/L. Já as concentrações médias variaram entre 104 e 144 mgSST/L, com média global igual a 122 mgSST/L. Estas concentrações medias de sólidos são inferiores `as usualmente reportadas na literatura especializada (METCALF & EDDY, 1991; VON SPERLING, 1995), possivelmente devido `a sedimentação de sólidos no interior da caixa de acumulação/distribuição, de onde era feita a amostragem do esgoto bruto.

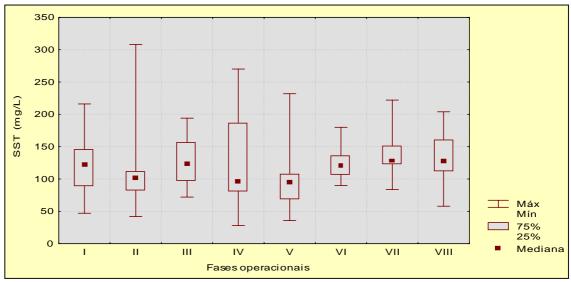


FIGURA 5.15 - Resultados Box-Whisker para a concentração de SST afluente do reator UASB

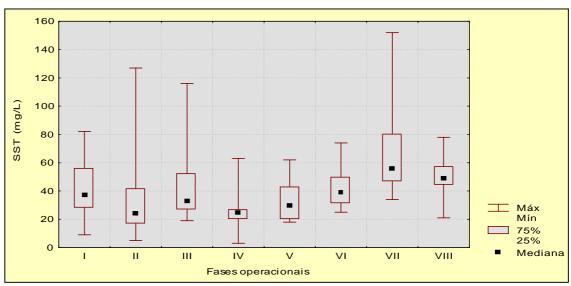


FIGURA 5.16 - Resultados Box-Whisker para a concentração de SST efluente do reator UASB

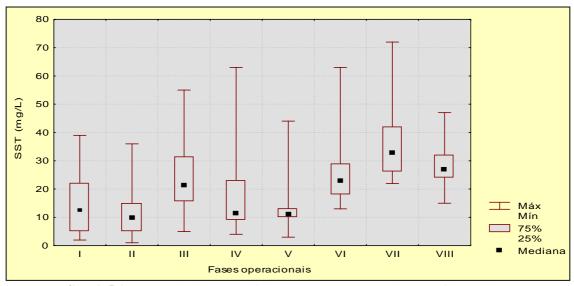


FIGURA 5.17 - Resultados Box-Whisker para a concentração de SST efluente do FBP

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

O efluente do reator UASB apresentou grandes variações das concentrações de SST, principalmente durante as fases II, III e VII, atingindo valores máximos de 127, 116 e 152 mgSST/L, respectivamente, e também grandes desvios padrão de 27, 25 e 33 para estas respectivas fases. Já em termos de concentrações médias de SST no efluente do reator UASB estas estiveram compreendidas entre 28 e 68 mgSST/L, com média global igual a 42 mgSST/L (ver TAB. 5.3).

Como pode ser observado pela FIG. 5.17, o efluente do filtro biológico percolador também apresentou grandes variações das concentrações de SST durante as fases experimentais, com valores máximos variando entre 36 e 72 mg/L. As variações nas concentrações de SST durante as fases operacionais podem ser atribuídas às condições de sobrecarga a que foram expostos os compartimentos de decantação interno e externo, que operaram com reduzidos tempos de detenção hidráulica ao longo das fases I a IV (dec. interno) e V a VIII (dec. externo).

Do mesmo modo que foi observado para DQO e DBO, também em relação aos sólidos suspensos totais observa-se um polimento complementar no efluente do filtro biológico percolador. Embora a concentração no efluente do reator UASB tenha se apresentado sistematicamente baixa, com resultados médios que variaram de 28 a 68 mgSST/L ao longo do período experimental, as concentrações médias no efluente final variaram entre 11 e 36 mgSST/L durante as fases experimentais, se apresentando em conformidade com a maioria dos restritivos padrões internacionais de lançamento.

Novamente, uma melhor qualidade do efluente foi observada nas fases II a VI, quando o filtro biológico foi operado com taxas de aplicação hidráulica e cargas orgânicas volumétricas variando de 6,8 a 17,0 m³/m².d, 1,0 a 2,7 kgDQO/m³.d e 0,7 a 1,4 kgDBO/m³.d. Para essas condições operacionais, o filtro biológico produziu um efluente final de excelente qualidade, com concentrações médias abaixo de 30 mgSST/L.

Durante as fases VII e VIII, foram observadas concentrações ligeiramente mais elevadas de sólidos suspensos no efluente final, quando o filtro biológico e o compartimento de decantação foram expostos a taxas de aplicação hidráulica muito altas (20,4 e 30,6 m³/m².d). No entanto, durante estas fases o filtro biológico já estava operando com o decantador externo de maior volume, o que certamente contribuiu para a manutenção das concentrações de sólidos em níveis ainda relativamente baixos, normalmente abaixo de 60 mgSST/L.

A FIG. 5.18 ilustra a variação das concentrações médias de SST ao longo das fases operacionais. Pode-se observar que as variações SST ao longo das fases experimentais têm um mesmo comportamento, com exceção das fases V e VII, quando o efluente do reator UASB apresentou tendências de perdas de sólidos. Isto aconteceu devido às maiores concentrações de sólidos totais no interior do reator UASB, conforme abordado mais detalhadamente no item 5.10.

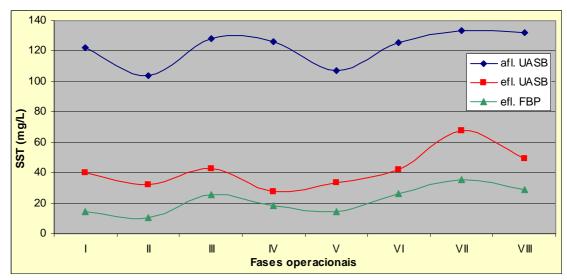


FIGURA 5.18 - Variação da concentração média de SST ao longo das fases operacionais

Cumpre ainda destacar o excelente desempenho do compartimento interno de decantação testado durante as fases I a IV, que, embora submetido a tempos de detenção hidráulica muito baixos, variando de 0,53 h na fase II a 0,26 h na fase IV, foi capaz de produzir um efluente final que apresentou concentrações médias de sólidos suspensos de 15, 11, 26 e 18 mgSST/L, para as fases I, II, III e IV, respectivamente.

A nova configuração proposta para o decantador, localizado na parte inferior do corpo do filtro biológico, apresentou resultados bastante promissores. Apesar do pequeno volume do compartimento de decantação (apenas 10,5 litros), que levaram à ocorrência de baixíssimos tempos de detenção hidráulica nessa unidade, ainda assim foram obtidas concentrações muito reduzidas de SST no efluente final, freqüentemente abaixo de 30 mg/L.

5.5 Efeitos das taxas de aplicação no desempenho do filtro biológico

Na presente pesquisa, as taxas de aplicação hidráulica superficial (qs) e as cargas orgânicas volumétricas (Cv) aplicadas no filtro biológico percolador variaram de baixa a alta, segundo as classificações apresentadas por METCALF & EDDY (1991) e JORDÃO & PESSOA (1995).

As FIG 5.19 a 5.23 mostram o efeito da Cv e da qs na qualidade do efluente final e nas eficiências de remoção de DQO e DBO no filtro biológico percolador. Tais curvas foram obtidas a partir dos valores médios de Cv e qs, constantes da TAB. 5.2; das concentrações médias de DQO, DBO e SST, constantes da TAB. 5.3; e das eficiências médias de remoção de DQO e DBO, constantes da TAB. 5.4. No entanto, para o estabelecimento das relações entre estes diversos parâmetros, não foram considerados os dados da fase I, por se tratar do período de partida do filtro biológico percolador. Desta forma, as correlações foram obtidas para os seguintes intervalos de Cv e qs, aplicados durantes as fases II a VIII (ver TAB. 5.2):

- Cv entre 1,0 e 5,6 kgDQO/m³.d
- Cv entre 0,7 e 3,9 kgDBO/m³.d
- qs entre $6.8 \text{ e } 30.6 \text{ m}^3/\text{m}^2.\text{d}$

Observa-se, a partir das FIG. 5.19 e 5.20, que, embora as correlações entre Cv e concentrações e eficiências de remoção de DQO não tenham sido elevadas (R² de 0,57 e 0,53, respectivamente), ainda assim foi possível verificar uma tendência bem definida de deterioração da qualidade do efluente e das eficiências de remoção quando a Cv foi além de 3 kgDQO/m³.d. Para cargas orgânicas volumétricas de até 3 kgDQO/m³.d, o filtro biológico percolador foi capaz de manter as concentrações médias de DQO do efluente abaixo de 100 mgDQO/L e, normalmente, muito próximas ao limite estabelecido pela legislação ambiental do Estado de Minas Gerais (90 mgDQO/L). Também em termos de eficiências de remoção de DQO, os resultados foram muito UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

satisfatórios quando o filtro biológico percolador operou com cargas orgânicas volumétricas de até 3 kgDQO/m³.d. Para essas condições, as eficiências médias variaram de 30% a 50%, o que pode ser considerado muito bom para um sistema de pós-tratamento (ver FIG. 5.19 e 5.20).



FIGURA 5.19 - Correlação entre carga orgânica volumétrica no FBP e concentração de DQO efluente

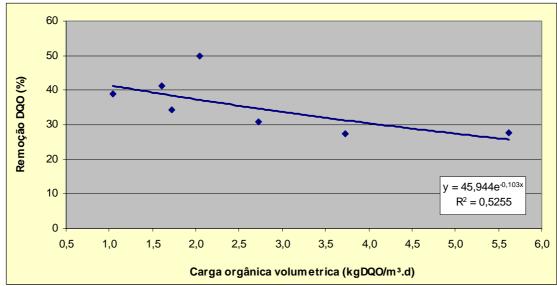


FIGURA 5.20 - Correlação entre carga orgânica volumétrica no FBP e eficiência de remoção de DQO

Em termos de DBO, as FIG. 5.21 e 5.22 mostram as correlações entre Cv e concentrações e eficiências de remoção de DBO. Novamente, embora os coeficientes R² não fossem elevados (0,68 e 0,45, respectivamente), pode-se observar a tendência bem

definida de deterioração da qualidade do efluente e das eficiências de remoção de DBO, para valores de carga orgânica volumétrica além de 1,5 kgDBO/m³.d. Para cargas orgânicas volumétricas de até 1,5 kgDBO/m³.d, os resultados obtidos para DBO foram ainda melhores do que os observados para DQO, com eficiências médias de remoção entre 55% e 67%. Abaixo dessa carga, o filtro biológico percolador também foi capaz de produzir um efluente de boa qualidade, com concentrações médias de DBO sempre abaixo de 32 mgDBO/L.

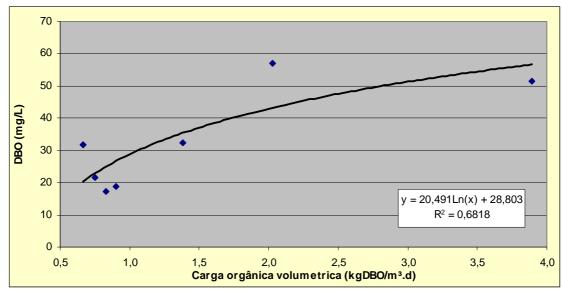


FIGURA 5.21 - Correlação entre carga orgânica volumétrica e concentração de DBO efluente

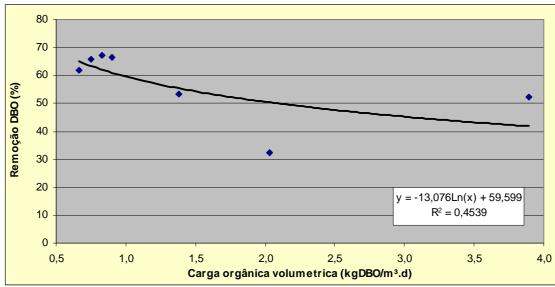


FIGURA 5.22 - Correlação entre carga orgânica volumétrica e eficiência de remoção de DBO

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

O efeito da taxa de aplicação hidráulica superficial na qualidade do efluente final do filtro biológico percolador é mostrado na FIG. 5.23. Novamente, pode ser observada uma deterioração da qualidade de efluente quando a taxa de aplicação aumenta, embora tenham sido obtidos resultados médios de SS bastante razoáveis, variando entre 11 mg/L e 36 mg/L ao longo do período experimental. Até mesmo quando a taxa de aplicação hidráulica superficial foi tão elevada quanto 30 m³/m².d, o efluente final obteve concentrações de SST sempre abaixo de 60 mg/L, limite estabelecido pela legislação ambiental do Estado de Minas Gerais.

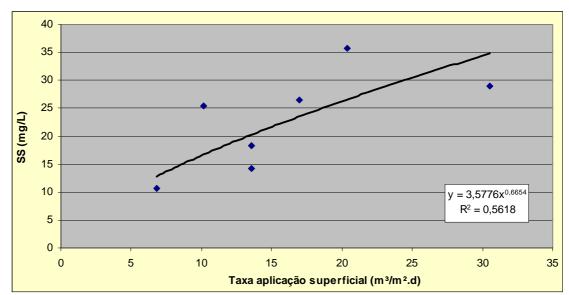


FIGURA 5.23 - Correlação entre taxa de aplicação hidráulica e concentração SS efluente

Com base nesses resultados, parece que o filtro e o compartimento de decantação podem suportar taxas de aplicação hidráulica superficial de até 20 m³/m².d, mantendo a concentração média de sólidos suspensos no efluente final abaixo de 40 mg/L.

Há que se destacar que, durante a fase I, quando o filtro biológico percolador estava submetido a menor taxa de aplicação hidráulica (3,4 m³/m².d), ocorreu o surgimento de moscas. Para as demais fases, o surgimento de moscas ocorreu eventualmente, normalmente, quando ocorria alguma falha no sistema de alimentação.

5.6 Distribuição dos resultados de DOQ, DBO e SST

Com base na análise dos efeitos das taxas de aplicação hidráulica superficial e cargas orgânicas volumétricas no desempenho do filtro biológico, observa-se que as maiores eficiências de remoção de DQO e DBO e, conseqüentemente, as menores concentrações em termos de DQO, DBO e SST no efluente final foram obtidas durante as fases II a VI. Será, portanto, analisado neste item como ocorreu a distribuição dos resultados ao longo dessas fases, quando o filtro biológico percolador foi operado com cargas orgânicas volumétricas inferiores a 3,0 kgDQO/m³.d e 1,5 kgDBO/m³.d e taxas de aplicação hidráulica superficial inferiores a 20 m³/m².d.

5.6.1 Distribuição dos resultados DQO

A FIG. 5.24 apresenta a freqüência de distribuição dos resultados de DQO obtidos para os efluentes do reator UASB e do filtro biológico, indicando como ocorreu a distribuição dos dados ao longo das fases que obtiveram as menores concentrações de DQO no efluente final (fases II a VI). É interessante ressaltar que durante estas fases o sistema UASB/FB foi capaz de atender o padrão de lançamento de efluentes em corpos d'água receptores do Estado de Minas Gerais (DN 010/86 COPAM) em aproximadamente 68% dos resultados de DQO obtidos.

A TAB. 5.4 faz uma comparação entre a freqüência de distribuição de concentração de DQO durante as fases (II a VI) e o atendimento ao padrão de lançamento do Estado de Minas Gerais (DN 010/86 COPAM).

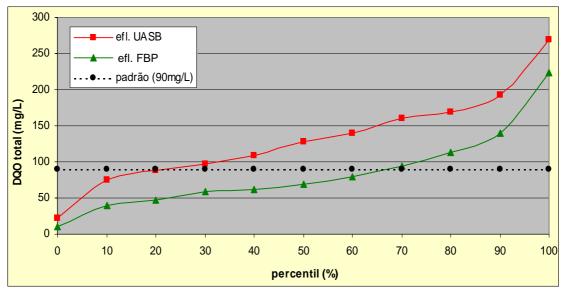


FIGURA 5.24 - Freqüência de distribuição dos resultados de DQO (fases II a VI)

TABELA 5.4 - Comparação entre a freqüência de distribuição de DQO e o atendimento ao padrão de lançamento do Estado de Minas Gerais

DQO efluente	Dados dentro do padrão	Dados fora do padrão	Padrão de lançamento DN 010/86			
Reator UASB	21%	79%	< 00 mg/L DOO total			
FBP	68%	32%	< 90 mg/L DQO total			

A análise de freqüência de distribuição demonstra que o sistema combinado UASB/FBP atingiu níveis satisfatórios de remoção de DQO total, e que o pós-tratamento contribuiu para uma melhoria na qualidade do efluente final, elevando a percentagem de atendimento ao padrão de lançamento da DN 010/86 de 21% para 68%.

5.6.2 Distribuição dos resultados DBO

A FIG. 5.25 apresenta a freqüência de distribuição dos resultados obtidos para a concentração de DBO efluente a planta piloto, indicando como ocorreu a distribuição dos dados ao longo das fases que obtiveram as menores concentrações de DBO no efluente final (fases II a VI).

A TAB. 5.5 faz uma comparação entre a frequência de distribuição durante as fases II a VI e o atendimento ao padrão de lançamento do Estado de Minas Gerais (DN 010/86 COPAM).

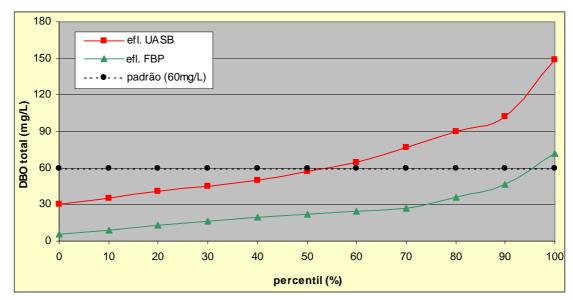


FIGURA 5.25 - Freqüência de distribuição dos resultados de DBO (fases II a VI)

TABELA 5.5 - Comparação entre a freqüência de distribuição de DBO e o atendimento ao padrão de lançamento do Estado de Minas Gerais

DBO efluente	Dados dentro do padrão	Dados fora do padrão	Padrão de lançamento DN 010/86			
Reator UASB	53%	47%	c 60 mg/L DDO total			
FBP	95%	5%	< 60 mg/L DBO total			

Do mesmo modo como foi observado para DQO, a análise de freqüência de distribuição demonstra que a planta piloto atingiu excelentes níveis de remoção de DBO, e que o pós-tratamento contribuiu significativamente para uma melhoria na qualidade do efluente final, elevando o nível de atendimento ao padrão de lançamento estabelecido pela DN 010/86 de 53% para 95% dos resultados de concentração de DBO obtidos durante as fases II a VI.

5.6.3 Distribuição dos resultados SST

A FIG. 5.26 apresenta a freqüência de distribuição dos resultados obtidos para a concentração de SST efluente, indicando como ocorreu a distribuição dos dados ao longo do período experimental entre as fases II e VI. Em relação ao atendimento ao padrão de lançamento do Estado de Minas Gerais, pode ser notado que aproximadamente 100% dos resultados de sólidos suspensos estiveram abaixo do limite de 60 mgSST/L durante as fases II a VI. Há que se destacar a grande capacidade do reator UASB em estabilizar e converter os sólidos suspensos afluentes, atendendo ao padrão de lançamento em praticamente 90% dos resultados.

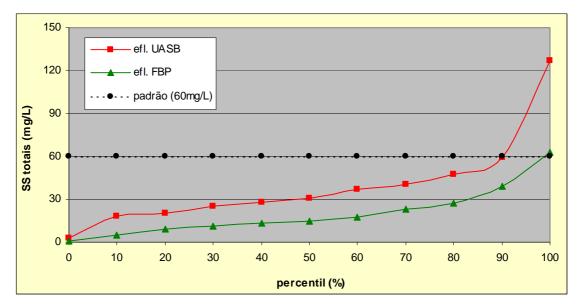


FIGURA 5.26 - Freqüência de distribuição dos resultados de SST (fases II a VI)

A TAB. 5.6 faz uma comparação entre a freqüência de distribuição de SST durante as fases II a VI e o atendimento ao padrão de lançamento do Estado de Minas Gerais (DN 010/86 COPAM).

TABELA 5.6 - Comparação entre a freqüência de distribuição de SST e o atendimento ao padrão de lançamento do Estado de Minas Gerais

SST efluente	Dados dentro do padrão	Dados fora do padrão	Padrão de lançamento DN 010/86		
Reator UASB	90%	10%	< 60 mg/L SS totais		
FBP	99%	1%	< 60 mg/L SS totais		

Do mesmo modo como foi observado para DBO, a análise de freqüência de distribuição demonstra que a planta piloto atingiu excelentes níveis de concentração de SST no efluente final, e que o pós-tratamento contribuiu para uma melhor qualidade do efluente final.

5.7 Resultados de Temperatura e Oxigênio Dissolvido

A FIG. 5.27 mostra, resumidamente, como ocorreu a variação das temperaturas afluente ao reator UASB, efluente do reator UASB, efluente do filtro biológico percolador e do ambiente, ao longo das fases experimentais. Pode-se observar, pelo gráfico de Box-Whisker, as medianas, os valores extremos de máximos e mínimos, os valores entre 25% e 75% dos resultados obtidos e como ocorre a dispersão dos resultados. Há que se destacar que as medidas de temperatura durante a fase I e para o afluente ao reator UASB foram realizadas *in loco* (pontual), devido ao fato dos medidores *on line* não estarem instalados na planta. Essas medições pontuais ocorreram rotineiramente, no período de 8:00 às 9:00 horas, 4 a 5 vezes por semana. A partir da fase II, foram realizadas medidas *on line*, ao longo de todo o dia, para o efluente do reator UASB, efluente do filtro biológico percolador e temperatura ambiente.



FIGURA 5.27 - Variação da temperatura ao longo das fases operacionais

Observa-se, durante a fase VIII uma alteração no gráfico Box-Whisker referente à pequena dispersão da temperatura ambiente. Isso deve-se a falhas no sistema de medição de temperatura, tendo sido registrados apenas os resultados de 4 dias durante toda a fase.

A TAB. 5. apresenta os resultados médios das medidas de temperatura obtidas durante as fases experimentais e a FIG. 5.28 mostra a variação mensal das temperaturas médias ao longo do período experimental.

TABELA 5.7 - Resultados médios de temperatura obtidos para cada fase operacional

Fases	Temperatura (°C)									
rases	Afl. UASB *	Efl. UASB	Efl. FBP	Ambiente						
I *	20,70	20,30	19,90	-						
II	20,80	21,00	20,70	21,60						
III	21,30	22,70	22,20	22,80						
IV	23,80	24,50	23,70	24,80						
V	24,60	24,90	24,10	25,70						
VI	22,00	22,50	21,80	22,80						
VII	20,20	21,00	20,20	21,20						
VIII	21,40	21,50	20,80	21,70						

^{*} Medidas de temperatura realizadas in loco (pontual).

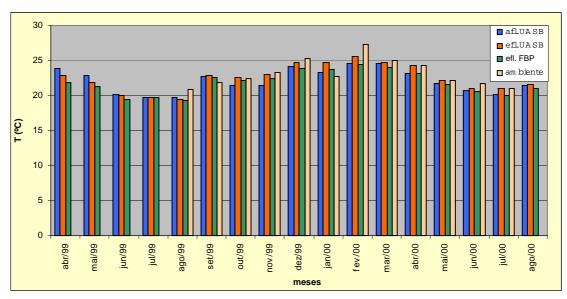


FIGURA 5.28 - Variação mensal das temperaturas médias

Como era de se esperar, as variações das temperaturas ambiente e do esgoto acompanharam as estações do ano, com valores mais elevados durante os meses de verão e valores menores durante os meses de inverno.

Pela FIG. 5.29, pode-se observar a variação das temperaturas médias durante as fases experimentais. Nota-se que a temperatura ambiente é normalmente superior às temperaturas dos efluentes do reator UASB e do filtro biológico percolador e que a temperatura do efluente do reator UASB é normalmente superior à temperatura do efluente do filtro biológico percolador. A menor temperatura do efluente do filtro biológico percolador. A menor temperatura do efluente do filtro biológico percolador pode estar relacionada ao fato deste ser aberto, tanto no topo quanto na base, para permitir a ventilação natural, ocorrendo, conseqüentemente, perdas de calor no interior do filtro biológico percolador.

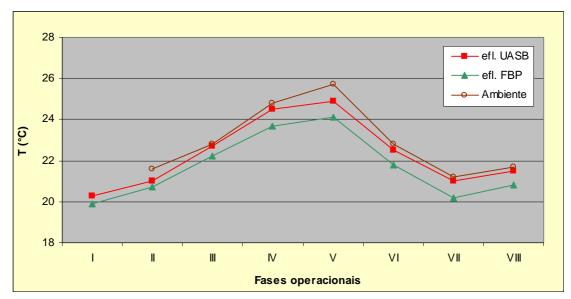
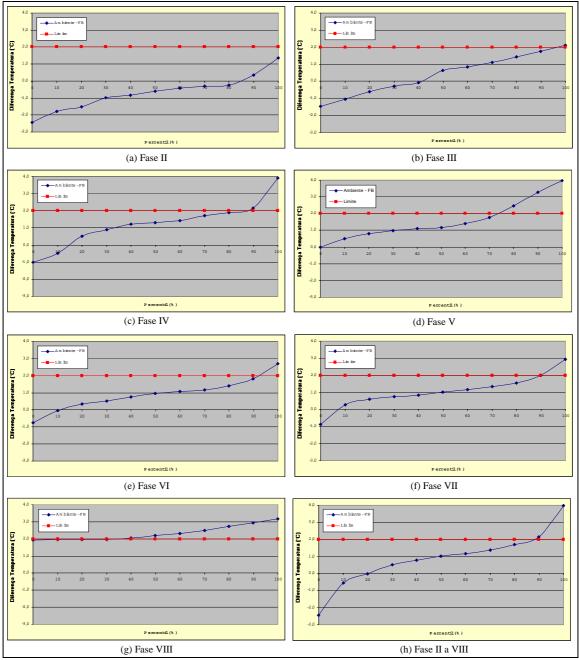



FIGURA 5.29 - Variação média da temperatura ao longo do período experimental

Na FIG. 5.29 não foram expressos os resultados de temperatura do afluente ao reator UASB devido ao fato de suas medidas terem sido realizadas *in loco* (pontual), entre 8:00 e 9:00 horas, e sua variação não corresponde às variações das médias das medidas *on line*.

Apesar dos resultados médios da temperatura do ar ambiente terem sido superiores à temperatura do efluente do filtro biológico percolador, a FIG. 5.30 mostra que há um gradiente de temperatura entre o efluente do filtro biológico e o ar ambiente. O valor limite de 2 °C, entre as temperaturas do ar ambiente e a do efluente do filtro biológico percolador, representa o gradiente de temperatura onde ocorre a interface entre a corrente de ar ascendente e a corrente de ar descendente, conforme explicado pela FIG. 3.8 (cap. 3). Quando o gradiente é inferior a 2 °C ocorre fluxo de ar ascendente e quando é superior a 2 °C ocorre fluxo de ar descendente (ver FIG. 3.8 - cap. 3).

A FIG. 5.30 mostra a frequência de distribuição da diferença das temperaturas do ar ambiente e do efluente do filtro biológico percolador e como ocorreu o fluxo de ar no interior do filtro, durante as fases II a VIII.

FIGURA 5.30 - Frequência de distribuição da diferença das temperaturas ambiente e do efluente do FBP

Observa-se pela FIG. 5.30a, fase II, que ocorreu fluxo de ar ascendente durante 100% do período de realização da fase e que a temperatura do ar ambiente foi menor que a temperatura do filtro biológico percolador em aproximadamente 84% dos resultados obtidos em toda a fase.

Durante as fases III, IV, VI e VII (FIG. 5.30 b, c, e, f), observa-se um comportamento semelhante na frequência de distribuição da diferença das temperaturas do ar ambiente e do efluente do filtro. Nota-se que ocorreu uma corrente de ar ascendente entre 89% e 96% dos resultados obtidos, e que a temperatura do ar ambiente foi menor que a temperatura do filtro biológico percolador entre 7% e 40% dos resultados obtidos durante o período de realização de cada fase.

Na fase V (FIG. 5.30 d), a temperatura do ar ambiente foi sempre superior à temperatura do filtro biológico percolador, isto se deve ao fato dessa fase ter ocorrido no período de verão. Durante a fase V ocorreu, em aproximadamente 74% do período, uma corrente de ar ascendente.

Na fase VIII (FIG. 5.30 g), foram registrados os menores valores para a ocorrência de fluxo de ar ascendente (30%). Todavia, mesmo durante o período de ocorrência de fluxo de ar ascendente, os valores obtidos entre a diferença das temperaturas do ar ambiente e do filtro biológico percolador foram bem próximos de 2 °C, demonstrando que durante esse período o fluxo de ar foi muito baixo. Durante esta fase, a temperatura ambiente foi sempre superior à temperatura do filtro biológico percolador. Deve-se destacar que, durante toda a fase VIII, foram registrados apenas as medidas de temperatura do ar

ambiente de 4 dias, devido a falhas no sistema *on line*, o que pode ter contribuído para a obtenção desses resultados.

Analisando os resultados médios durante as fases II a VIII (FIG. 5.30 h), nota-se que em aproximadamente 90% do período experimental aconteceu um fluxo de ar ascendente. Pela FIG. 5.30h, observa-se que, em aproximadamente 20% do período experimental, a temperatura do ar ambiente foi menor que a temperatura do efluente do filtro biológico percolador.

Segundo recomendações de IMHOFF & IMHOFF (1986) e ASCE (1982), a abertura para ventilação, na base do filtro biológico percolador, deve ser maior que 1% e 15%, respectivamente, da área superficial do filtro biológico. No presente estudo, o compartimento para aeração possuía 38 orifícios com diâmetro de ½", com área total para a passagem de ar na base do filtro biológico de 0,005 m², correspondente a 6,8% da área superficial do filtro biológico percolador, o que parece ter atendido as necessidades do sistema.

As FIG. 5.31 e 5.32 apresentam as correlações entre temperatura e remoção de DBO e remoção de DQO, respectivamente, para o filtro biológico percolador. Apesar do coeficiente de determinação não ter sido muito elevado pode-se observar que, à medida que a temperatura se eleva, a eficiência de remoção também aumenta.

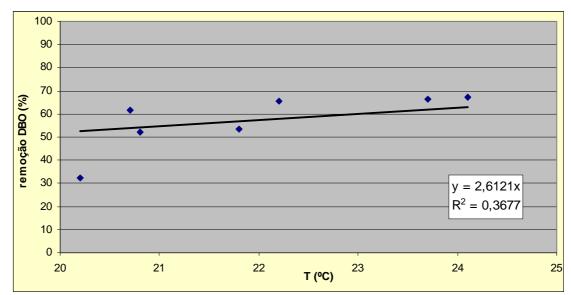


FIGURA 5.31 - Correlação entre temperatura e remoção de DBO para o FBP

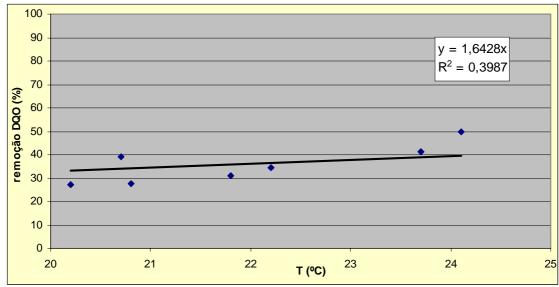


FIGURA 5.32 - Correlação entre temperatura e remoção de DQO para o FBP

Pelos resultados obtidos verifica-se que as melhores eficiências de remoção de DBO e DQO ocorreram durante as fases IV e V, as quais também apresentaram as maiores medidas de temperatura. Nestas fases, o filtro biológico percolador foi exposto à taxa de aplicação hidráulica de 13,7 m³/m².d e às cargas orgânicas volumétricas de 0,8 a 1,4 kgDBO/m³.d. e de 2,1 a 2,7 kgDQO/m³.d.

Em termos de oxigênio dissolvido no efluente do FBP, a TAB. 5. apresenta os resultados obtidos durante as fases operacionais, bem como os dados estatísticos básicos. A FIG. 5.33 mostra como ocorreu a variação dos resultados em cada fase.

TABELA 5.8 - Resultados de oxigênio dissolvido no efluente do FBP e dados estatísticos básicos, obtidos durante as fases operacionais

Fases	I	II	III	IV	V	VI	VII	VIII
Média (mg/L)	1,46	1,57	1,71	1,31	1,56	1,14	1,58	1,37
Máximo (mg/L)	2,78	4,30	3,31	2,40	4,70	3,87	3,45	1,90
Mínimo (mg/L)	0,30	0,15	0,78	0,30	0,53	0,22	0,30	0,49
DP	0,75	0,95	0,61	0,64	1,23	0,83	0,87	0,44
CV	0,51	0,60	0,36	0,49	0,79	0,73	0,55	0,32
n	13	38	32	26	26	39	19	19

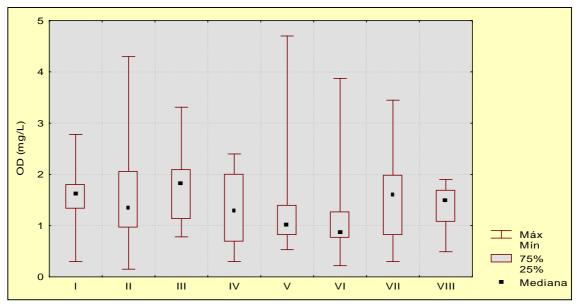


FIGURA 5.33 - Variação dos resultados de Oxigênio Dissolvido Durante as fases operacionais

Os resultados médios variaram entre 1,31 mg/L e 1,71 mg/L ao longo do período experimental. Nota-se pelos coeficientes de variação obtidos e pela FIG. 5.33, que ocorreu uma grande dispersão dos resultados, com valores mínimos em torno de 0,15 mg/L e máximos em torno de 4,70 mg/L. Estas variações podem ter ocorrido devido a

erros de leitura com o oxímetro, decorrentes de problemas com a colocação da solução eletrolítica durante as trocas de membrana do sensor de OD.

Contudo, pode-se observar que o efluente do filtro biológico percolador matem uma certa concentração final de oxigênio dissolvido, contribuindo significativamente para a melhoria da qualidade do efluente final.

5.8 Resultados de pH, Alcalinidade e Ácidos voláteis

Pela TAB. 5.3 e FIG. 5.34, observa-se que, para o efluente do reator UASB, o pH variou entre 5,55 e 7,10 e para o efluente do filtro biológico percolador o pH variou entre 6,40 e 7,98 durante as oito fases operacionais. Embora o efluente do reator UASB tenha atingido o valor mínimo de 5,55 durante a fase II, os resultados médios obtidos em todas as fases foram sempre superiores a 6,3, valor mínimo para se evitar problemas operacionais segundo VAN HAANDEL & LETTINGA (1994).

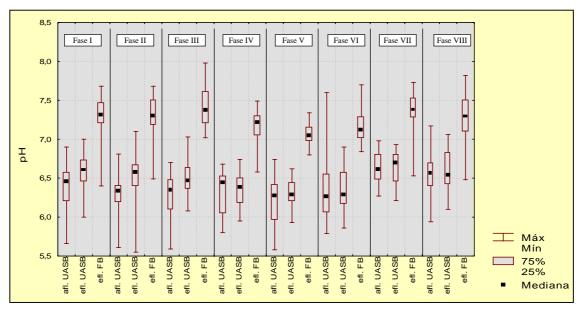


FIGURA 5.34 - Variação dos resultados de pH

A FIG. 5.34 mostra como ocorram as variações de pH durante o período operacional. Observa-se, pelo gráfico de Box-Whisker, que o afluente e o efluente do reator UASB e efluente do filtro biológico percolador tiveram um comportamento semelhante. O efluente final da planta piloto (FBP) obteve resultados de pH dentro dos valores dos padrões estabelecidos pela DN010/86-COPAM, em todas as fases operacionais. Pode-se observar, também, que o pH do efluente do reator UASB, esteve, normalmente, acima do pH do afluente ao reator UASB, demonstrando a capacidade de tamponamento dos reatores anaeróbios. A elevação do pH no efluente do FBP pode estar relacionada `a liberação de gás carbônico devido a percolação do efluente através do meio suporte

Conforme pode se notar pela FIG. 5.35, o efluente do reator UASB atingiu valores mais elevados de alcalinidade do que o seu afluente, ao longo de todo o período experimental. Para o afluente e efluente do reator UASB foram obtidos valores médios entre 152 mg/L e 205 mg/L e entre 190 mg/L e 228 mg/L, respectivamente, confirmando a capacidade de tamponamento do reator UASB pela produção de alcalinidade.

Para o filtro biológico percolador foram obtidos resultados médios de alcalinidade variando entre 173 mg/L e 223 mg/L, durante as oito fases operacionais (ver TAB. 5.3). É interessante notar que durante as fases I a IV a alcalinidade do efluente do filtro biológico percolador foi inferior a alcalinidade do afluente, demonstrando que houve consumo de alcalinidade. Esses resultados estão de acordo com a ocorrência de nitrificação no filtro biológico percolador, que foi mais intensa também nessas fases (ver item 5.9).

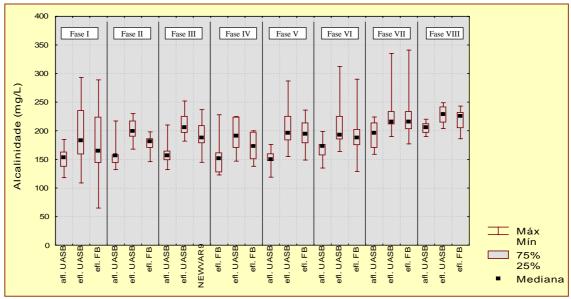


FIGURA 5.35 - Variação dos resultados de Alcalinidade

Pela FIG. 5.36, nota-se a variação dos resultados de ácidos voláteis ao longo do período experimental. Os valores médios para o afluente e efluente do reator UASB variaram de 74 mg/L a 112 mg/L e de 28 mg/L a 73 mg/L, respectivamente. Para o efluente do filtro biológico percolador, os valores médios de ácidos voláteis estiveram entre 19 mg/L e 68 mg/L (ver TAB. 5.3).

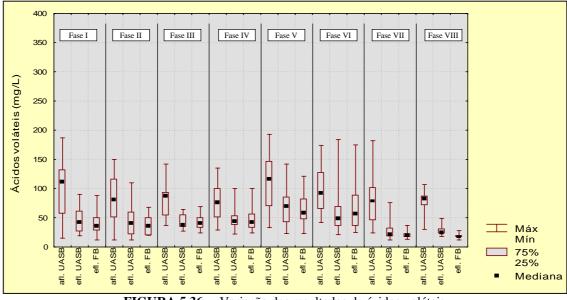


FIGURA 5.36 - Variação dos resultados de ácidos voláteis

5.9 Resultados de Nitrogênio e Fósforo

As variações dos valores médios das concentrações de nitrogênio total Kjeldahl (NTK), nitrato e fósforo ao longo do período experimental estão expressas nas FIG. 5.37 a 5.40.

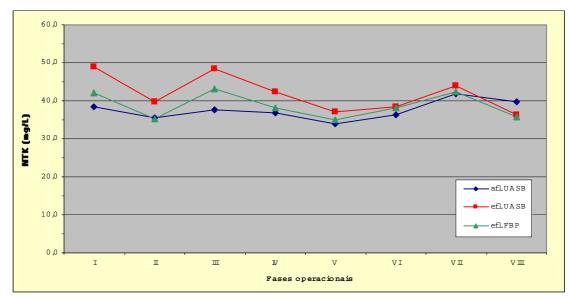


FIGURA 5.37 - Variação de NTK durante o período experimental

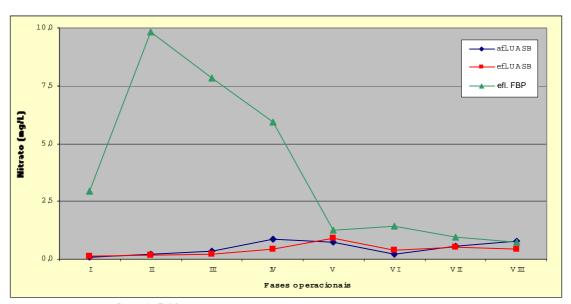


FIGURA 5.38 - Variação de Nitrato durante o período experimental

Pode-se observar a partir da FIG. 5.37, que o filtro biológico percolador promoveu uma redução na concentração de NTK efluente do reator UASB durante todo o período operacional, embora os melhores resultados tenham sido obtidos nas fases I a IV. Nestas

fases, foram observadas eficiências médias de conversão de NTK variando entre 10 e 14% (valores obtidos a partir da TAB. 5.3). Estas maiores conversões nas fases I a IV representam o consumo de N-amoniacal e a formação de N-NO₃-, conforme pode ser observado pela FIG. 5.38. Todavia, duas inconsistências de valores devem ser destacadas:

- a elevada redução de NTK na fase I, sem a correspondente formação de N-NO₃⁻
- as concentrações de NTK no esgoto bruto, que foram sistematicamente mais baixas que as do efluente do reator UASB, quando o contrário deveria ser observado.

Uma provável explicação para a baixa nitrificação ocorrida durante a fase I é que, nesta fase, o filtro biológico percolador encontrava-se em início de operação e, provavelmente, as bactérias dos gêneros *Nitrosomonas* e *Nitrobacter*, responsáveis pela nitrificação, estavam se adaptando ao meio suporte e à formação do biofilme.

Possíveis explicações para essas inconsistências seriam o menor número de análises de NTK para o esgoto bruto, ou mesmo erros analíticos decorrentes da maior presença de sólidos no esgoto bruto.

As melhores condições de nitrificação ocorreram durante as fases II a IV, quando o filtro biológico percolador operou com taxas hidráulicas entre 6,8 e 13,6 m³/m².d, e cargas orgânicas volumétricas entre 1,0 e 1,6 kgDQO/m³.d e entre 0,7 e 0,9 kgDBO/m³.d. Para as fases seguintes, observou-se uma queda na nitrificação. Esta observação está de acordo com METCALF & EDDY (1991), que indicam ocorrência de

nitrificação mais acentuada nos filtros biológicos percoladores operados com baixas taxas hidráulicas e cargas orgânicas volumétricas.

Comparando os resultados obtidos para nitrato e alcalinidade, observa-se que o maior consumo de alcalinidade foi durante a fase II, quando ocorreu a maior formação de nitrato. A partir da fase III, na medida em que a formação de nitrato diminuiu, o consumo de alcalinidade também foi reduzido.

As FIG. 5.39 e 5.40 mostram a variação da concentração média de fósforo total e solúvel, respectivamente, ao longo do período experimental. Como foram feitas poucas análises de fósforo, não se pode inferir com maior certeza sobre os resultados, porém, pode-se observar que as concentrações de fósforo no efluente do filtro biológico percolador foram ligeiramente inferiores às do efluente do reator UASB, devido à demanda nutricional do biofilme.

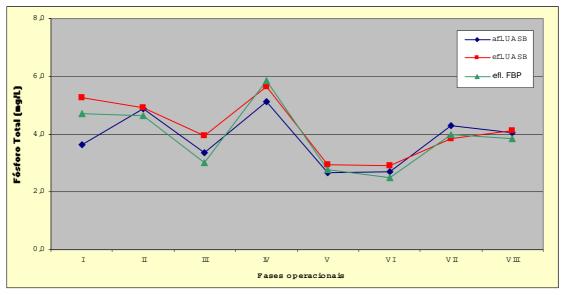


FIGURA 5.39 - Variação de Fósforo total durante o período experimental

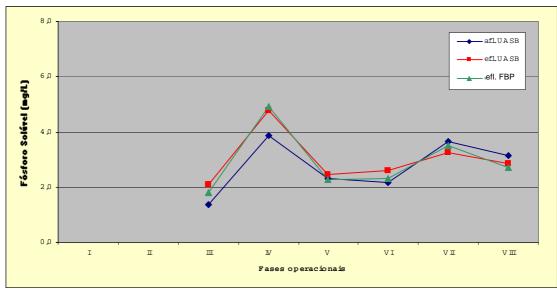


FIGURA 5.40 - Variação de Fósforo solúvel durante o período experimental

As TAB. 5. e 5.1 , apresentam a relação entre a matéria carbonácea, nitrogênio e fósforo, aplicada ao reator UASB e ao filtro biológico, respectivamente, durante as fases operacionais.

TABELA 5.9 - Relação DBO:N:P aplicada ao reator UASB durante as fases operacionais

Fases		Afluente UASB			Relação	
T uses	DBO (mg/L)	NTK (mg/L)	Fósforo (mg/L)	DBO	N	P
I	263	38	3,6	300	45	3
II	327	36	4,9	300	33	6
III	248	38	3,3	300	45	3
IV	294	37	5,1	300	39	6
V	231	34	2,7	300	45	3
VI	268	36	2,7	300	42	3
VII	305	42	4,3	300	42	3
VIII	256	40	4,1	300	48	6

TABELA 5.10 - Relação DBO:N:P aplicada ao filtro biológico durante as fases operacionais

Fases	-	Efluente UASB	-		Relação	
1 does	DBO (mg/L)	NTK (mg/L)	Fósforo (mg/L)	DBO	N	P
I	71	49	5,3	100	69	7
II	83	40	4,9	100	48	6
III	63	48	3,9	100	76	6
IV	56	42	5,7	100	75	10
V	52	37	3,0	100	71	6
VI	69	38	2,9	100	55	4
VII	85	44	3,9	100	52	5
VIII	108	36	4,1	100	33	4

De acordo com LETTINGA (1996) e VON SPERLING (1995), as relações de DBO, N e P recomendadas para o tratamento anaeróbio e aeróbio são 300:5:1 e 100:5:1, respectivamente. Dessa forma pode-se observar pelas TAB. 5.10 e 5.11 que os requisitos de nutrientes para o crescimento bacteriano foram plenamente atendidos, tanto no reator UASB quanto no filtro biológico percolador.

5.10 Resultados microbiológicos

Os parâmetros microbiológicos foram avaliados apenas durante as fases VI, VII e VIII do período experimental. As TAB. 5.1 e 5.1 mostram os resultados médios e eficiências de remoção de coliformes totais, *Escherichia coli* e ovos de helmintos, respectivamente, enquanto as FIG. 5.41 e 5.42 mostram a variação de coliformes totais e *E. coli*, respectivamente.

TABELA 5.11 - Resumo dos resultados médios dos parâmetros microbiológicos

Fases	Parâ-	CT (NMP/100r	nL)	E. coli	(NMP/10	0mL)	Helmi	intos (ovo	s/L)
rases	metros	afl. UASB	efl. UASB	efl. FBP	afl. UASB	efl. UASB	efl. FBP	afl. UASB	efl. UASB	efl. FBP
	média	2,4 x 10 ⁹	$1,0 \times 10^8$	$4,7 \times 10^7$	$3,5 \times 10^8$	$2,9 \times 10^7$	$1,0 \times 10^7$	10,0	4,5	0,7
	máximo	$1,2 \times 10^{10}$	$5,7 \times 10^8$	$3,7 \times 10^8$	$2,3 \times 10^9$	$1,8 \times 10^8$	7.0×10^7	20,0	5,0	1,3
VI	mínimo	$4,1 \times 10^7$	$1,5 \times 10^7$	$5,2 \times 10^6$	$1,0 \times 10^7$	$2,0 \times 10^6$	$1,0 \times 10^6$	0,0	4,0	0,0
	DP	$3,5 \times 10^9$	$1,9 \times 10^8$	$1,0 \times 10^8$	7.1×10^8	$5,4 \times 10^7$	$2,0 \times 10^7$	14,1	0,7	0,9
	CV	1,47	1,89	2,13	2,01	1,89	1,96	1,4	0,2	1,4
	n	13	13	13	13	13	13	2	2	2
	média	4,6 x 10 ⁹	1.8×10^8	$1,6 \times 10^8$	$7,4 \times 10^8$	$4,3 \times 10^7$	$4,2 \times 10^7$	11,5	0,7	0,5
	máximo	$1,2 \times 10^{10}$	$9,2 \times 10^8$	$4,6 \times 10^8$	$2,5 \times 10^9$	$2,0 \times 10^8$	$1,3 \times 10^8$	13,0	1,3	1,0
VII	mínimo	$1,1 \times 10^9$	$1,2 \times 10^7$	$3,3 \times 10^7$	3.0×10^8	$4,1 \times 10^6$	$1, x 10^7$	10,0	0,0	0,0
	DP	$3,4 \times 10^9$	$2,8 \times 10^8$	$1,3 \times 10^8$	$7,2 \times 10^8$	$7,3 \times 10^7$	$4,2 \times 10^7$	2,1	0,9	0,7
	CV	0,75	1,51	0,81	0,97	1,72	1,00	0,2	1,4	1,4
	n	9	9	9	9	9	9	2	2	2
	média	$4,4 \times 10^9$	3.0×10^8	$1,1 \times 10^8$	$5,3 \times 10^8$	$7,5 \times 10^7$	$2,6 \times 10^7$	8,2	4,0	2,1
	máximo	$1,0 \times 10^{10}$	$7,3 \times 10^8$	4, x 10 ⁸	$2,2 \times 10^9$	$2,5 \times 10^8$	$1,3 \times 10^8$	20,0	8,0	5,3
VIII	mínimo	$1,4 \times 10^9$	$9,3 \times 10^7$	$1,9 \times 10^7$	$2,2 \times 10^8$	$1,2 \times 10^7$	$3,1 \times 10^6$	0,0	1,3	0,5
	DP	$3,1 \times 10^9$	$2,2 \times 10^8$	$1,4 \times 10^8$	$6,7 \times 10^8$	$7,5 \times 10^7$	$4,2 \times 10^7$	8,5	2,9	2,2
	CV	0,71	0,73	1,31	1,25	1,00	1,62	1,0	0,7	1,1
	n	9	9	9	9	9	9	4	4	4

TABELA 5.12 -Resumo das eficiências médias obtidas para coliformes totais, *Escherichia coli* e ovos de helmintos

Fases	Colife	ormes Totai	is (%)	Esch	erichia coli	i (%)	Не	elmintos (9	%)
1 ases	UASB	FBP	Global	UASB	FBP	Global	UASB	FBP	Global
VI	96 (1,4)	54 (0,3)	98 (1,7)	92 (1,1)	64 (0,4)	97 (1,5)	55	85	93
VII	96 (1,4)	12 (0,1)	96 (1,5)	94 (1,2)	1 (0,0)	94 (1,2)	94	25	96
VIII	93 (1,2)	64 (0,4)	98 (1,6)	86 (0,9)	65 (0,5)	95 (1,3)	52	48	75

Nota: valores entre parênteses correspondem à remoção em unidade logarítmica.

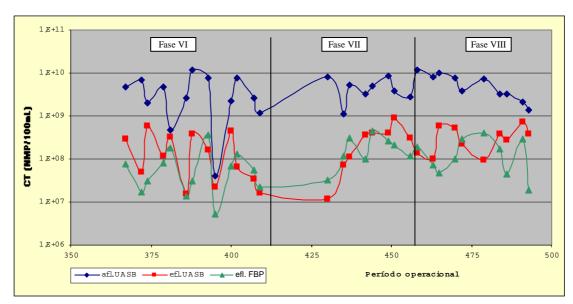


FIGURA 5.41 - Variação de coliformes totais ao longo do período experimental (fases VI a VIII)

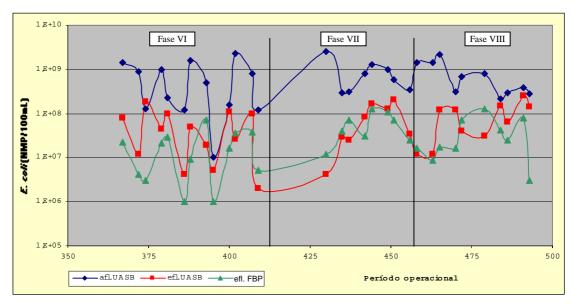


FIGURA 5.42 - Variação de E. coli ao longo do período experimental (fases VI a VIII)

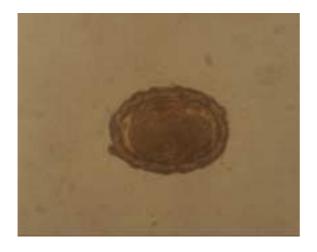
Observa-se, pelas FIG. 5.41 e 5.42, e TAB. 5.12, que as concentrações de coliformes totais e $E.\ coli$. do esgoto afluente ao reator UASB, durante as fases VI a VIII, tiveram valores mínimos compreendidos entre $4,1x10^7$ e $1,1x10^9$ NMP/100mL, e entre $1,7x10^7$ e $3,0x10^8$ NMP/100mL, respectivamente. Enquanto as concentrações máximas estiveram próximas de $1,2x10^{10}$ e $2,3x10^9$ NMP/100mL, para coliformes totais e $E.\ coli$,

respectivamente. As concentrações médias estiveram compreendidas entre 2,4x10⁹ e 4,6x10⁹ NMP/100mL, e entre 3,5x10⁸ e 7,4x10⁸ NMP/100mL, para coliformes totais e *E. coli*, respectivamente. A concentração média global, para o afluente ao reator UASB, foi igual a 3,4x10⁹ NMP/100mL para coliformes totais e 4,9x10⁸ NMP/100mL para *E. coli*.

Para o efluente do reator UASB, as concentrações de coliformes totais e *E. coli*, tiveram valores mínimos variando de 1,0x10⁸ a 3,0x10⁸ NMP/100mL, e de 2,9x10⁷ a 7,5x10⁷ NMP/100mL, respectivamente. As concentrações máximas variaram entre 5,7x10⁸ e 9,2x10⁸ NMP/100mL, para coliformes totais e entre 1,8x10⁸ e 2,5x10⁸ NMP/100mL *E. coli*, respectivamente. As concentrações médias variaram de 1,0x10⁸ a 3,0x10⁸ NMP/100mL, e de 2,9x10⁷ a 7,5x10⁷ NMP/100mL, para coliformes totais e *E. coli*, respectivamente. A concentração média global, para o efluente ao reator UASB, foi igual a 1,6x10⁸ NMP/100mL, para coliformes totais, e 4,2x10⁷ NMP/100mL, para *E. coli*.

Durante as fases VI a VIII, foram obtidas concentrações mínimas de coliformes totais e *E. coli*, para o efluente do filtro biológico percolador, variando entre 4,7x10⁷ e 1,6x10⁸ NMP/100mL, respectivamente. As concentrações máximas obtidas estiveram compreendidas entre 3,7x10⁸ e 4,6x10⁸ NMP/100mL, para coliformes totais, e entre 7,0x10⁷ e 1,3x10⁸ NMP/100mL, para *E. coli*. Enquanto as concentrações médias variaram entre 4,7x10⁷ e 1,6x10⁸ NMP/100mL, e entre 1,0x10⁷ e 4,2x10⁷ NMP/100mL, para coliformes totais e *E. coli*, respectivamente.

Embora tenham sido obtidas eficiências médias de remoção no sistema UASB/FBP que variaram entre 96% e 98% (1,5 e 1,7 un.log) para coliformes totais e entre 94% e 97% (1,2 e 1,5 un.log) para *E. coli*, estes resultados não são suficientes para produzir efluentes com concentrações inferiores a 4.000 coliformes totais/100 mL e 1.000 coliformes fecais/100 mL, que é o valor máximo admitido para os corpos d'água da Classe 2 (Resolução CONAMA 010/86).


Em termos de ovos de helmintos, foram obtidas baixas concentrações desses organismos tanto no esgoto bruto quanto nos efluentes do reator UASB e do filtro biológico. As concentrações médias nas fases VI a VIII variaram entre 8 e 12 ovos/L (esgoto bruto), 1 e 5 ovos/L (efluente UASB) e 0,5 e 2 ovos/L (efluente FBP), conferindo ao sistema eficiências médias de remoção que variaram entre 75% e 96%. Estas baixas concentrações de ovos de helmintos no esgoto bruto podem estar relacionadas a um melhor quadro epidemiológico da população contribuinte e também à ocorrência de alguma sedimentação de ovos na caixa de acumulação/distribuição.

Quanto às espécies de helmintos, foram observados, no esgoto bruto, ovos de nematóides (*Ascaris lumbricoides* e ancilostomídeos), sendo que a espécie que apresentou maior predominância foi a *Ascaris lumbricoides*, presente praticamente em todas as amostras.

Para o efluente do reator UASB, as espécies mais identificadas foram *Ascaris lumbricoides*, ancilostomídeos e *Hymenolepis* sp, sendo que também foram identificados ovos de *Trichuris tichiura*, porém em menor quantidade.

No efluente final do filtro biológico percolador foram encontrados ovos de *Ascaris lumbricoides*, ancilostomídeos, *Hymenolepis* sp e *Enterobius vermiculares*, porém com maior prevalência dos ovos de ancilostomídeos. O mesmo foi observado por ZERBINI (2000), ao realizar estudos em um sistema de tratamento de esgotos anaeróbio/aeróbio constituído por um reator UASB e rampas de escoamento superficial. Segundo ZERBINI, é possível que isso ocorra devido ao fato desses ovos apresentarem uma velocidade de sedimentação inferior a dos ovos de *Ascaris lumbricoides* (ancilostomídeos 0,26 m/h e *Ascaris lumbricoides* 0,43 m/h). Com isso, os ovos de ancilostomídeos poderiam ser arrastados com maior facilidade para o efluente.

Os resultados observados para as amostras de esgoto bruto demonstram que as espécies prevalentes foram *Ascaris lumbricoides* e ancilostomídeos, sendo que os ovos de *Ascaris lumbricoides* foram os que apresentaram maiores freqüências de ocorrências. O fato de o esgoto doméstico ter maior presença de ovos de *Ascaris lumbricoides*, constata, infelizmente, que a ascariose é uma das mais freqüentes helmintíases humanas. A FIG. 5.43 ilustra as espécies prevalentes de ovos de helmintos identificados nos esgotos bruto e tratado.

(a) Ovo de Ascaris lumbricoides

(b) Ovo de Ancilostomídeo

(c) Ovo de Hymenolepis nana

(d) Ovo de Hymenolepis diminuta

(e) Ovo de Trichuris trichiura

(f) Ovo de Enterobius vermicularis

FIGURA 5.43 - Identificação das espécies prevalentes de ovos de helmintos

5.11 Produção de Biogás

As FIG. 5.44 e 5.45 mostram, respectivamente, a variação da produção de biogás e do teor de CH₄ no reator UASB. Ao longo de todo o período experimental, os resultados da vazão de biogás variaram entre 1,1 e 12,4 L/h, obtendo-se uma vazão média de 5,6 L/h de biogás. Deve-se destacar que, durante alguns dias de operação, nas fases I, II e V, ocorreram problemas de vazamento e/ou entupimento no sistema de coleta do biogás, contribuindo para uma menor taxa de produção de biogás.

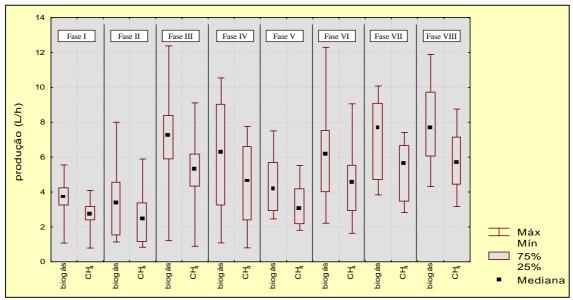


FIGURA 5.44 - Variação da produção de biogás e metano

A FIG. 5.45 apresenta a variação do teor de CH₄ na composição do biogás produzido, até o 232° dia do período operacional, correspondente às fases I a IV do experimento. Para as demais fases não foi possível determinar o teor de metano no biogás devido a falhas no equipamento de medição (cromatógrafo). Contudo, pelas 15 amostras realizadas, nota-se que o teor médio de metano obtido foi de 73,6%, valor este de acordo com os mencionados pela literatura.

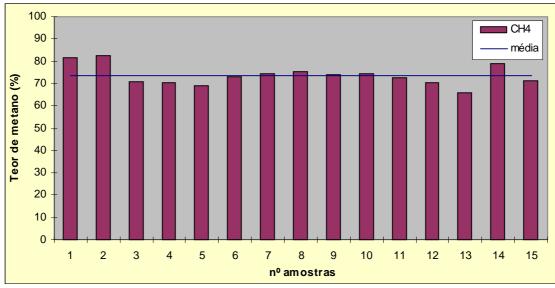


FIGURA 5.45 - Variação do teor de metano no biogás

5.12 Balanço de DQO no Sistema

A TAB. 5.13 apresenta as cargas de DQO afluente e efluente do reator UASB e o balanço da produção média de metano e lodo, em termos de DQO, durante o período experimental. Com base na análise estequiométrica a taxa de produção teórica de metano nas condições normais de temperatura e pressão é de 0,35 L/gDQOremovida. Observa-se que os resultados encontrados foram próximos ao valor teórico.

TABELA 5.13 - Balanço da produção média de metano e lodo em termos de DQO no reator UASB

			Conc	entração	de DQO			Massa de	e DQO		Coef. de pro	odução de sólidos	Carga de	Produção de		ção de	-	rodução de
Fases	Vazão	DQOf afl	DQOf efl	DQOp afl	DQOp hid afl	DQOf rem	DQOp hid afl	DQOf afl	DQOf efl	DQOf rem	Yobs	Yobs	DQO CH ₄	lodo		H ₄ /h)	CH ₄ (LCH ₄ /gDQOf rem)	
	(L/d)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(gDQOafl/d)	(gDQOafl/d)	(gDQO efl/d)	(gDQO/d)	gST/gDQOrem	gDQOlodo/gDQOrem	(gDQO/d)	$(gDQO_{lodo}\!/d)$	Teórica	medida	Teórica	medida
I	2400	328	96	339	236,97	469,08	569	787	230	1126	0,15	0,17	387	82	6,07	2,78	0,31	0,14
II	2400	208	71	363	254,16	391,03	610	499	171	938	0,13	0,15	333	58	5,23	2,49	0,32	0,15
Ш	2400	179	62	291	203,76	320,95	489	431	149	770	0,19	0,22	251	69	3,97	5,34	0,30	0,40
IV	2400	152	43	325	227,57	336,25	546	365	104	807	0,14	0,16	282	54	4,48	4,38	0,32	0,31
V	2400	168	60	251	175,91	283,96	422	404	145	681	0,27	0,30	198	86	3,15	3,21	0,27	0,27
VI	2400	174	61	271	189,95	303,34	456	418	146	728	0,23	0,26	223	80	3,53	4,58	0,28	0,36
VII	2400	194	88	293	205,08	311,24	492	466	211	747	0,34	0,39	190	121	2,98	5,30	0,23	0,41
VIII	2400	202	68	349	244,20	377,67	586	484	164	906	0,27	0,31	260	117	4,10	5,70	0,26	0,36
									médi	a =	0,22	0,25	266	84	4,19	4,22	0,29	0,30

5.13 Resultados de Sólidos Totais

Os resultados de sólidos totais foram obtidos a partir da amostragem do lodo ao longo da altura do reator UASB, no ponto de descarte de lodo no decantador interno (fases I a IV) e nos pontos de descarte de lodo no decantador externo (fases V a VIII).

5.13.1 Reator UASB

Os resultados de sólidos totais obtidos nos pontos de amostragem de lodo ao longo da altura do reator UASB estão apresentados na FIG. 5.46, que ilustra a variação e o comportamento dos ST e STV durante o período operacional. Observa-se que, normalmente, a maior concentração de sólidos ocorre na parte inferior do compartimento de digestão, até próximo as torneiras 8 e 10, podendo, eventualmente, chegar a maiores concentrações até na parte superior do compartimento de digestão quando o descarte não é efetuado.

A FIG. 5.46 mostra a variação da biomassa, expressa por STV, e a relação entre as concentrações de sólidos totais voláteis e sólidos totais, dentro do reator UASB, durante o período experimental. A relação de STV/ST variou entre 61 e 70%, obtendo valor médio de 67%. A quantidade de biomassa variou de 5429 a 8523 g, com valor médio de 6984 g.

Durante o período da pesquisa, foram realizados descartes de lodo, normalmente a cada 2 a 3 meses. O descarte era realizado quando a concentração de sólidos totais atingia um teor acima de 5% ou quando se verificava uma maior perda de sólidos no efluente do reator UASB. Também foram realizados descartes quando ocorria aumento da perda de carga na tubulação de alimentação do reator UASB.

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

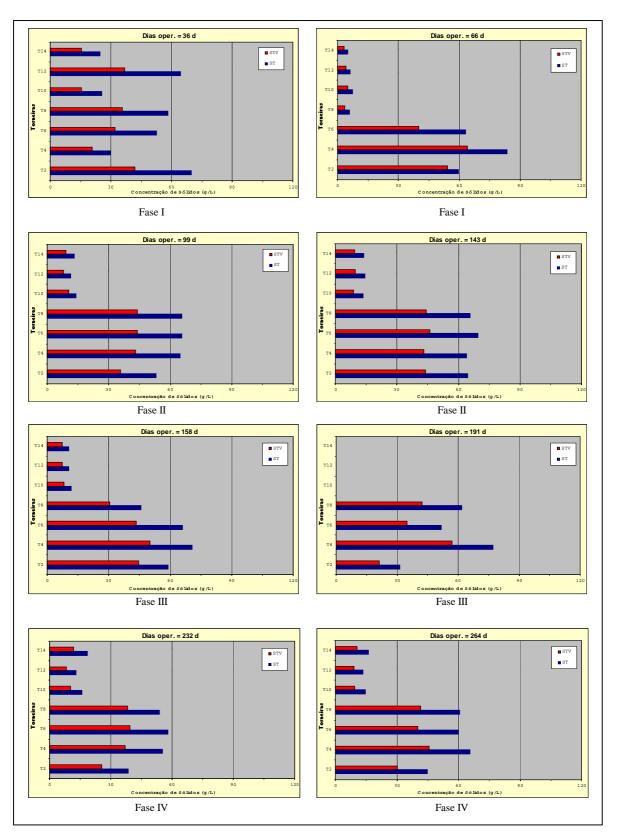


FIGURA 5.46 - Perfil de sólidos totais no reator UASB

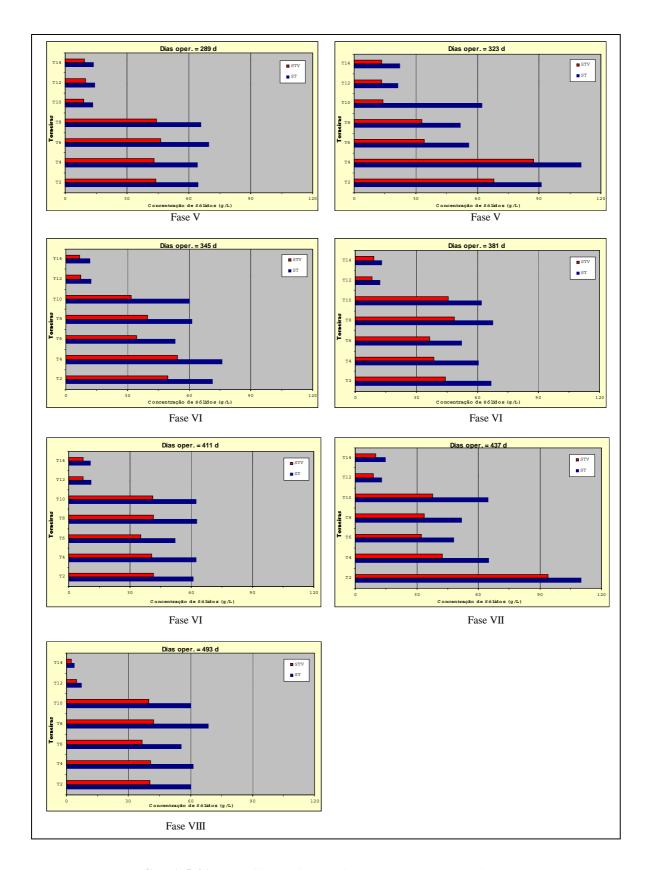
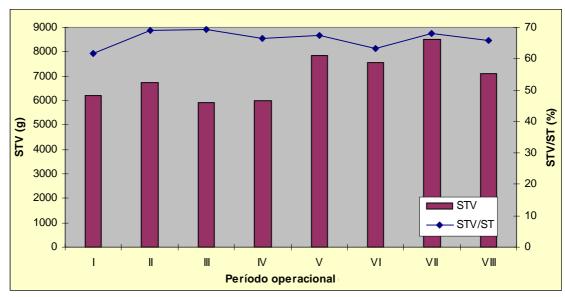



FIGURA 5.46 - Perfil de sólidos totais no reator UASB (continuação)

FIGURA 5.47 - Variação da biomassa e relação entre as concentrações de sólidos totais voláteis e sólidos totais dentro do reator UASB

5.13.2 Decantador do Filtro Biológico Percolador

Os resultados da massa de sólidos totais, obtidos no ponto de descarte de lodo no fundo do decantador interno (fases I a IV) e no fundo do decantador externo (fases V a VIII), estão apresentados na FIG. 5.48. Os resultados de sólidos totais do sobrenadante descartado do decantador externo (fases V a VIII) estão apresentados na FIG. 5.49.

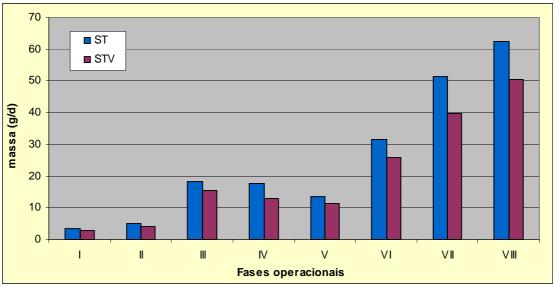
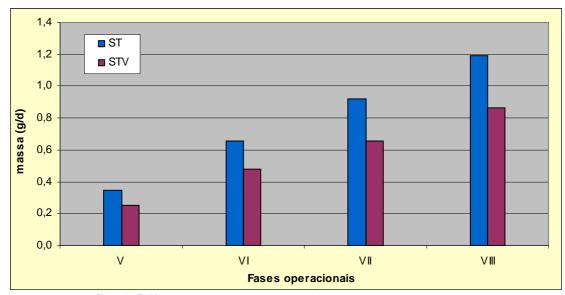



FIGURA 5.48 - Variação da massa de sólidos totais e sólidos totais voláteis (descarte de lodo no fundo do decantador)

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

FIGURA 5.49 - Variação da massa de sólidos totais e sólidos totais voláteis (descarte do sobrenadante do decantador)

Para as fases V a VIII, quando o sistema operou com decantador externo ao filtro biológico percolador, foi realizado descarte de lodo no fundo do decantador e do sobrenadante, sendo que os resultados estão expressos pelas FIG. 5.48 e 5.49. Pela FIG. 5.48, observa-se um crescimento progressivo da massa de sólidos descartada. Este crescimento deve-se ao aumento das taxas de aplicação hidráulica e cargas orgânicas aplicadas ao filtro biológico percolador durante o desenvolvimento da pesquisa (ver TAB. 5.2).

A FIG. 5.49 mostra a variação da massa de ST e STV descartada no sobrenadante, durante as fases V a VIII. Observa-se que há um aumento da massa de sólidos descartada ao longo das respectivas fases operacionais. Isto demonstra que a produção de sobrenadante também variou em conseqüência do aumento das taxas de aplicação hidráulica e cargas orgânicas aplicadas ao filtro biológico percolador.

5.13.3 Balanço de sólidos no reator UASB e Filtro Biológico Percolador

O esquema do balanço de sólidos no reator UASB e no filtro biológico percolador é representado pela FIG. 5.50. A TAB. 5.14 apresenta os valores correspondentes a cada variável do esquema do balanço de sólidos, e as TAB. 5.15 e 5.16 fornecem o coeficiente de produção de sólidos no reator UASB e no filtro biológico percolador, em termos de massa de ST e STV por massa de DQO e DBO aplicadas e removidas, respectivamente, para cada fase operacional do sistema.

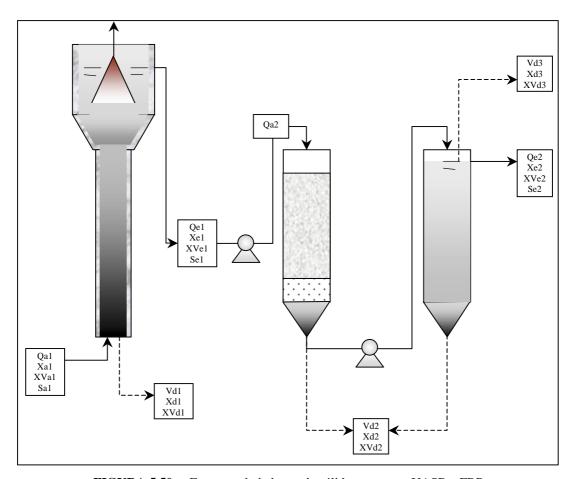


FIGURA 5.50 - Esquema do balanço de sólidos no reator UASB e FBP

TABELA 5.14 - Valores correspondentes a cada variável do esquema do balanço de sólidos no sistema UASB/FBP

										Variá	veis do	sistema	a UAS	B/FBP										
	0	Vaz (m³			ume mé cartado			Concer	,	média Su g/L)	ubstrato		Conc	entração		de Sólio g/L)	los Sus	pensos	Co	oncentraç		ia de Sól: g/L)	dos To	tais
Fases	Duração (d)	afl. UASB	afl. FBP	Reator UASB	Dec. FBP	Esc. FBP	afl. UASB	efl. UASB	efl. FBP	afl. UASB	efl. UASB	efl. FBP		fl. ASB	e	fl. ASB	_	fl. BP		ator ASB	Decar	ntador BP		euma BP
, ,	D	Qa1 = Qe1	Qa2 = Qe2	Vd1	Vd2	Vd3	DQOa1	DQOe1	DQOe2	2 DBOa1	DBOe1	DBOe2	Xa1	XVa1	Xe1	XVe1	Xe2	XVe2	Xd1	XVd1	Xd2	XVd2	Xd3	XVd3
I	90	2,4	0,24	124,25	136,5	-	666	234	175	263	71	31	122	106	40	35	15	12	45829	28228	2647	1562	-	-
II	60	2,4	0,48	124,25	126,0	-	571	131	80	327	83	32	104	90	33	24	11	8	28714	19348	2267	1562	-	-
III	56	2,4	0,72	124,25	168,0	-	470	143	94	248	63	22	128	112	43	35	26	22	20986	14558	2264	1457	-	-
IV	53	2,4	0,96	124,25	84,0	-	477	100	59	294	56	19	126	102	28	21	18	14	26229	17401	2248	1474	-	-
V	49	2,4	0,96	124,25	40,9	10,5	420	128	64	231	52	17	107	91	33	26	14	12	41829	25426	3373	2380	1627	1167
VI	74	2,4	1,20	124,25	92,4	27,9	446	136	94	268	69	32	125	108	42	35	26	21	42357	29206	4591	3278	1747	1280
VII	44	2,4	1,44	124,25	47,3	22,6	487	155	113	305	85	57	133	105	68	56	36	28	39029	26559	5140	3643	1797	1271
VIII	35	2,4	2,16	124,25	58,9	21,9	550	156	113	256	108	52	132	103	49	42	29	23	39429	25964	5663	3990	1904	1380

TABELA 5.15 - Coeficiente de produção de lodo no reator UASB, em termos de ST e STV

		Yto	otal			Ydesc	artado	,		Yto	otal			Ydesc	artado	
Fases	(considera	ındo perda o	de sólidos no	efluente)		(lodo para	a secagem)		(considera	ando perda o	de sólidos no	efluente)		(lodo para	secagem)	
1 uses	g ST / g DQOapl	g ST / g DBOapl	g ST / g DQOrem	g ST / g DBOrem	g ST / g DQOapl	g ST / g DBOapl	g ST / g DQOrem	g ST / g DBOrem	g STV / g QOapl	g STV / g DBOapl	g STV / g DQOrem	g STV / g DBOrem	g STV / g DQOapl	g STV / g DBOapl	g STV / g DQOrem	g STV / g DBOrem
I	0,10	0,25	0,15	0,34	0,04	0,10	0,06	0,14	0,08	0,19	0,12	0,27	0,02	0,06	0,04	0,08
II	0,10	0,18	0,13	0,24	0,04	0,08	0,06	0,10	0,07	0,13	0,09	0,17	0,03	0,05	0,04	0,07
III	0,13	0,25	0,19	0,33	0,04	0,08	0,06	0,10	0,10	0,20	0,15	0,26	0,03	0,05	0,04	0,07
IV	0,11	0,18	0,14	0,22	0,05	0,09	0,07	0,11	0,08	0,13	0,10	0,16	0,04	0,06	0,05	0,07
V	0,18	0,33	0,27	0,43	0,11	0,19	0,15	0,25	0,13	0,23	0,18	0,29	0,06	0,12	0,09	0,15
VI	0,16	0,27	0,23	0,36	0,07	0,11	0,10	0,15	0,12	0,21	0,18	0,28	0,05	0,08	0,07	0,10
VII	0,23	0,37	0,34	0,51	0,09	0,15	0,14	0,21	0,18	0,29	0,26	0,40	0,06	0,10	0,09	0,14
VIII	0,19	0,42	0,27	0,72	0,11	0,23	0,15	0,39	0,15	0,31	0,20	0,54	0,07	0,15	0,10	0,26
média	0,15	0,28	0,22	0,40	0,07	0,13	0,10	0,18	0,11	0,21	0,16	0,30	0,05	0,08	0,06	0,12

TABELA 5.16 - Coeficiente de produção de lodo no decantador do FBP, em termos de ST e STV

		Yt	otal			Ydesc	artado			Yto	otal			Ydesc	artado	
Fases	(considera	ındo perda o	de sólidos no	efluente)		(lodo para	secagem)		(consider	ando perda o	de sólidos no	efluente)		(lodo para	a secagem)	
	g ST / g DQOapl	g ST / g DBOapl	g ST / g DQOrem	g ST / g DBOrem	g ST / g DQOapl	g ST / g DBOapl	g ST / g DQOrem	g ST / g DBOrem	g STV / g QOapl	g STV / g DBOapl	g STV / g DQOrem	g STV / g DBOrem	g STV / g DQOapl	g STV / g DBOapl	g STV / g DQOrem	g STV / g DBOrem
I	0,13	0,44	0,53	0,79	0,07	0,24	0,28	0,42	0,09	0,30	0,36	0,54	0,04	0,14	0,17	0,25
II	0,16	0,25	0,40	0,40	0,08	0,12	0,19	0,19	0,12	0,18	0,30	0,30	0,05	0,08	0,13	0,13
III	0,24	0,56	0,71	0,85	0,07	0,15	0,19	0,23	0,19	0,44	0,56	0,67	0,04	0,10	0,12	0,15
IV	0,22	0,39	0,53	0,59	0,04	0,07	0,09	0,10	0,16	0,28	0,38	0,43	0,02	0,04	0,06	0,07
V	0,14	0,34	0,27	0,50	0,03	0,06	0,05	0,09	0,11	0,27	0,22	0,41	0,02	0,04	0,04	0,07
VI	0,23	0,46	0,75	0,86	0,04	0,08	0,13	0,14	0,19	0,37	0,60	0,69	0,03	0,06	0,09	0,10
VII	0,26	0,48	0,95	1,47	0,03	0,05	0,11	0,16	0,20	0,36	0,73	1,12	0,02	0,04	0,07	0,12
VIII	0,22	0,31	0,79	0,60	0,03	0,05	0,12	0,09	0,17	0,25	0,63	0,48	0,02	0,03	0,08	0,06

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

Conclusão 121

6. CONCLUSÃO

Os resultados obtidos nesta pesquisa demonstram que os filtros biológicos percoladores podem promover uma importante remoção adicional de DQO e DBO de efluentes de reatores UASB. Foram obtidos resultados muito bons durante as fases II a VI, quando o filtro foi operado com taxas de aplicação hidráulica e cargas orgânicas volumétricas que variaram de 6,8 a 17,1 m³/m².d, 1,0 a 2,7 kgDQO/m³.d e 0,7 a 1,4 kgDBO/m³.d. Para essas condições operacionais, o FBP foi capaz de produzir um efluente final de qualidade muito boa, com concentrações médias de DQO, DBO e de SS em torno de 90 mgDQO/L, 30 mgDBO/L e 25 mgSS/L. Durante as fases II a VI o sistema UASB/FBP pôde atender o padrão de lançamento estabelecido pela legislação ambiental do Estado de Minas Gerais em aproximadamente 70% dos resultados de DQO e em quase 100% dos resultados de DBO e de SS.

Com base nos resultados obtidos, pode-se afirmar que os filtros biológicos percoladores atuando como unidades de pós-tratamento de reatores UASB podem ser razoavelmente bem operados com cargas orgânicas volumétricas de até 3 kgDQO/m³.d (até 1,5 kgDBO/m³.d) e taxas de aplicação hidráulica de até 20 m³/m².d. Os resultados também demonstraram a viabilidade de se projetar filtros biológicos percoladores com pequenas alturas de meio suporte, representando uma grande economia na construção destas unidades.

A nova configuração do decantador, acoplado ao corpo do FBP, além de conduzir a uma concepção mais econômica e simplificada para essa unidade de pós-tratamento, também

Conclusão 122

propiciou a geração de um efluente final bastante clarificado, com baixíssimos teores de sólidos suspensos.

Em termos dos resultados microbiológicos, o sistema UASB/FBP foi capaz de promover uma expressiva remoção de ovos de helmintos com eficiências variando de 75% a 96%. No entanto, como já era esperado, as eficiências de remoção de indicadores bacterianos foram muito baixas, variando de 0 a 1,7 unidades logarítmicas para coliformes totais e *E. coli*. Esses resultados indicam a necessidade de desinfeção do efluente final a fim de melhorar a sua qualidade sanitária.

Os resultados obtidos demonstram a viabilidade do sistema UASB/FBP para o tratamento de esgoto sanitário em países tropicais, a temperaturas ambientes, até mesmo em situações menos favoráveis quando o efluente do reator UASB apresenta concentrações mais elevadas em termos de DQO, DBO e SS. O sistema UASB/FBP pode se tornar uma alternativa muito promissora para o tratamento de esgoto sanitário no Brasil, uma vez que o sistema pode ser projetado com tempos de detenção hidráulica muito baixos, resultando em uma unidade de tratamento compacta e de baixo custo. Além disso, o consumo de energia e os custos operacionais são mínimos.

Recomendações 123

7. RECOMENDAÇÕES

Com o objetivo de se obter maiores informações e orientar futuras pesquisas com o sistema combinado constituído por reatores anaeróbios e filtros biológicos, recomendase:

- Avaliar o efeito da recirculação do efluente na eficiência do FBP;
- Avaliar o efeito do retorno do lodo de descarte do decantador do FBP para digestão no reator UASB;
- Analisar diferentes alturas do leito percolador;
- Desenvolver estudos comparativos entre decantadores internos (na base do FBP)
 e externos, focalizando os aspectos técnicos e econômicos;
- Realizar análises microbiológicas do biofilme, com o objetivo de verificar quais os microrganismos estão presentes e envolvidos com a decomposição da matéria orgânica;
- Implementar e investigar uma unidade de desinfecção como pós-tratamento do
 efluente do filtro biológico percolador, visando a remoção dos microrganismos
 patogênicos e a produção de efluente com melhor qualidade sanitária.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- AISSE, M.M. & LEITE, B.Z. (1997). Pós tratamento de efluentes de reatores tipo RALF em lagoas de estabilização. In: Anais do 19º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Foz do Iguaçu: ABES, p. 910-919.
- AISSE, M.M., LOBATO, M.B., BONA, A., GARBOSSA, L.H.P., ALEM SOBRINHO, P. (2000a). Avaliação do sistema reator UASB e filtro biológico aerado submerso para o tratamento de esgoto sanitário. In: Anais do XXVII Congresso Interamericano de Engenharia Sanitária e Ambiental. Porto Alegre-RS: AIDIS, 8 p. I-109.
- AISSE, M.M., NOLASCO, M.A., ANDREOLI, F.D.N., LOBATO, M.B., SAVELLI, C.S., JURGENSEN, D., ALEM SOBRINHO, P. (2000b). *Pós-tratamento de fluentes provenientes de reatores anaeróbios tipo UASB*. In: Anais VI Oficina e Seminário Latino-americano de Digestão Anaeróbia. Recife-PE, p. 321 a 327.
- AISSE, M.M., LOBATO, M.B., BONA, A., GARBOSSA, L.H.P., JURGENSEN, D., ALEM SOBRINHO, P. (2000c). *Avaliação do sistema reator UASB e filtro biológico para o tratamento de esgoto sanitário.* In: Anais do XXVII Congresso Interamericano de Engenharia Sanitária e Ambiental. Porto Alegre-RS: AIDIS, 9 p. I-108.
- ALEM SOBRINHO, P. (1983). *Tratamento de Esgotos domésticos através de filtros biológicos de alta taxa. Comparação experimental de meios-suportes de biomassa.* Revista DAE, SABESP São Paulo. Ano XLIV nº 135. dezembro. p. 58-78.
- ANDRADE NETO, C.O., MELO, H.S., PEREIRA, M.G., FILHO, M.L. (2000). Filtros anaeróbios com enchimentos de diferentes materiais. In: Pós-tratamento de efluentes de reatores anaeróbios. Coletânea de trabalhos técnicos PROSAB 2, Vol. 1, p. 75 a 86.
- ARANTES, R.F.M., VIEIRA, A.G.F., KATO, M.T., FLORENCIO, L. (2000). *Uso de lagoa de polimento para efluente de reator UASB*. In: Pós-tratamento de efluentes de reatores anaeróbios. Coletânea de trabalhos técnicos PROSAB 2, Vol. 1, p. 33 a 42.
- ARAUJO, G.C. (1998). Avaliação do pós-tratamento de efluentes de reatores UASB através de um sistema de aplicação superficial de esgotos no solo. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais UFMG, 129 p.
- ASCE (1982). Sewage Treatment Plant Design. Manuals of engineering practice no 36, p. 151 a 177.
- AWWA/APHA/WEF (1998). Standard methods for the examination of water and wastewater. 20th edition. Washington.
- AYRES, R & MARA, D. (1996). *Analysis of wastewater for use in agriculture*. A laboratory manual of parasitological and bacteriological techniques. WHO, Geneva.
- BAILENGER, J. (1979). *Mechanisms of parasitological concentration in coprology and their practical consequences*. Journal of American medical technology, 41, p. 65 71.
- BASTOS, R.K.X. (1996). *Reuso de efluentes*. In: Seminário Internacional Tendências no tratamento simplificado de águas residuárias domésticas e industriais. Departamento de Engenharia Sanitária e Ambiental UFMG, p. 223 a 236.
- BELÉM, B. D. (1996). Pós-tratamento de efluentes de esgoto sanitário através de filtro biológico com taxas variáveis. Dissertação de Mestrado. Escola de Engenharia de São Carlos USP, 101 p. Citado por COLETTI, F.J., POVINELLI, J., DANIEL, L.A. (1997). Tratamento por lodos ativados de efluentes provenientes de processos anaeróbios de tratamento de esgoto sanitário: determinação de constantes. In: Anais do 19º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Foz do Iguaçu: ABES, p. 660 a 670.
- BENEFIELD, L.D. & RANDALL, C.W. (1987). *Biological process design for wastewater treatment*. p.391 a 456.

- BIDONE, F.R.A., SOUZA, L.P., POVINELLI, J. (1999). Serragens de couro curtido tipo wet blue utilizados como meio suporte em filtros biológicos destinados ao tratamento de esgotos sanitários In: 20º Congresso Brasileiro de Engenharia Sanitária e Ambiental ABES, p. 982 a 991.
- BRANCO, S. M. (1986). Hidrobiologia Aplicada à Engenharia Sanitária, CETESB, p.437-444.
- BRASIL (1986). Resolução CONAMA nº 20, 18 de junho de 1986. *Estabelece a classificação das águas doces, salobras, e salinas.* Ministério do Desenvolvimento Urbano e Meio Ambiente. Brasília/DF.
- CALLADO, N.H. & FORETTI, E. (1997). Resistência à toxicidade em um reator anaeróbio de manta de lodo (UASB) submetido ao aumento de concentração de sulfato no afluente. In. Anais do 19º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Foz do Iguaçu: ABES, 1997 p.969-980.
- CAMPOS, J. R. (1998). Esgoto. Tratamento de esgotos sanitários por processo anaeróbio e disposição controlada no solo. PROSAB, 1ª ed. ABES, Rio de Janeiro, 464 p.
- CASSEB, M.M.S. (1996). Avaliação do desempenho de um Reator Anaeróbio de fluxo ascendente e manta de lodo, em escala piloto, tratando esgotos sanitários da cidade de Belo Horizonte. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais UFMG, 128 p.
- CETEC Fundação Centro Tecnológico de Minas Gerais (1982). *Estado da Arte da Digestão anaeróbia*. Série Publicações Técnicas SPT-005. Belo Horizonte, 100 p.
- CHERNICHARO, C.A.L. (1990). The effect of temperature and substrate concentration on the performance of UASB reactors. Thesis of Doctor of Philosophy. University of Newcastle Upon Tyne UK. Department of Civil Engineering. 343 p.
- CHERNICHARO, C.A.L. (1997). Princípios do tratamento biológico de águas residuárias. Vol. 5. Reatores Anaeróbios. Departamento de Engenharia Sanitária e Ambiental da UFMG, 246 p.
- CHRISTENSEN, F.R., KRISTENSEN, G.H., JANSEN, J.C. (1988). Profilm Structure An important and neglected parameter in wastewater treatment.
- COLETTI, F.J., POVINELLI, J., DANIEL, L.A. (1997). Tratamento por lodos ativados de efluentes provenientes de processos anaeróbios de tratamento de esgoto sanitário: determinação de constantes. In: Anais do 19º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Foz do Iguaçu: ABES, p. 660 a 670.
- COPASA (1999). Companhia de Saneamento de Minas Gerais. DRMT/SPMO/DVMO/Geo. Cadastro de redes de esgoto Sub-bacias de contribuição, novembro/1999.
- CORAUCCI FILHO, B., NOUR, E.A.A., FIGUEIREDO, R.F., STEFANUTTI, R., FILHO, L.C.K., BROLEZE, S.T. (2000a). Estudo de um sistema de pós-tratamento de efluente com aplicação do método de escoamento superficial no solo: polimento de efluentes de filtros anaeróbios. In: Póstratamento de efluentes de reatores anaeróbios. Coletânea de trabalhos técnicos PROSAB 2, Vol. 1, p. 1 a 8.
- DALTRO FILHO, J. (1992). Tecnologia da digestão anaeróbia para o tratamento de despejos líquidos. Revista DAE SABESP nº. 163 Jan/Fev, p. 1 a 4.
- ELMITWALLI, T., ZEEMAN, G., LETTINGA, G. (2000). *Anaerobic Treatment of Domestic Sewage at low temperature*. In: VI Oficina e Seminário Latino Americano de Digestão Anaeróbia. Recife, PE-Brasil, p. 60-67.
- FAIR, G.M., GEYER, J.C., OKUN, D.A. (1979). *Ingeniería sanitaria y de aguas residuales*. Tomo II Purificación de aguas y tratamiento y remoción de aguas residuales. Editorial Limusa. México, p. 531 a 584.
- FREIRE, V.A. (1999). Avaliação do desempenho de um sistema combinado UASB Lodos Ativados no Tratamento de efluentes sanitários e modelagem do sistema de lodos ativados. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais -UFMG, 148 p.
- FREIRE, V.A., VON SPERLING, M., CHERNICHARO, C.A.L. (1999). Avaliação do desempenho de um sistema combinado UASB Lodos Ativados no Tratamento de efluentes sanitários. In: Anais do 20º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Rio de Janeiro: ABES, p.905-912.
- UFMG Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

- GONÇALVES, R.F. (1996). Aspectos teóricos e práticos do tratamento de esgoto sanitário em biofiltros aerados com leito granular submerso. In: Seminário Internacional Tendências no tratamento simplificado de águas residuárias domésticas e industriais. Departamento de Engenharia Sanitária e Ambiental UFMG, p. 128 a 143.
- GONÇALVES, R.F., PASSAMANI, F.R.F., SALIM, F.P., SILVA, A.L.B., MARTINELI, G., BAUER, D.G. (2000). Associação de um reator UASB e biofiltros aerados submersos para o tratamento de esgoto sanitário. In: Pós-tratamento de efluentes de reatores anaeróbios. Coletânea de trabalhos técnicos PROSAB 2, Vol. 1, p. 119 a 134.
- GUIMARÂES, T.L.V. (1997) Estudo e modelagem de um sistema anaeróbio de tratamento de esgotos: Desenvolvimento da instrumentação aplicada a uma planta piloto. Dissertação de Mestrado. PPGEE-UFMG, 179 p.
- HALVORSON (1936), Sewage Works J., 891. Citado por IMHOFF, K. & IMHOFF, K. R. (1986). *Manual de tratamento de águas residuárias*. 301 p.
- HELLER, L. (1989). *Esgotamento sanitário em zona de urbanização precária*. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais -UFMG, p.229 a 232.
- IMHOFF, K. & IMHOFF, K. R. (1986). Manual de tratamento de águas residuárias. 301 p.
- JORDÃO, E.P. & PESSÔA, C.A. (1995). Tratamento de esgotos domésticos. 3ª ed. ABES, 682 p.
- LEKANG, O. & KLEPPE, H. (2000). Efficiency of nitrification in trickling filters using different filter media. Department of Agricultural Engineering, University of Agriculture, Norway. http://www.scienciedirect.com. Vol. 21, January 2000, Journal Format-PDF (676 K) p.181-199.
- LETTINGA, G., HULSHOFF POL, L.W., ZEEMAN, G. (1996a). *Biological wastewater treatment, Part I: Anaerobic wastewater treatment.* Lecture notes. Department of Environmental Technology, Wageningen Agricultural University, 145 p.
- LETTINGA, G. (1996b). *Anaerobic wastewater treatment*. In: Seminário Internacional Tendências no tratamento simplificado de águas residuárias domésticas e industriais. Departamento de Engenharia Sanitária e Ambiental UFMG, p. 106 a 126.
- LUCAS FILHO, M., PEREIRA, M.G., MELO, H.N.S., ANDRADE NETO, C.O., SILVA, D.A. (2000b). Disposição controlada de esgotos em solo preparado com cobertura vegetal através escoamento subsuperficial. In: Pós-tratamento de efluentes de reatores anaeróbios. Coletânea de trabalhos técnicos PROSAB 2, Vol. 1, p. 9 a 16.
- MACHADO, R.M.G. (1997). Estudo da associação em série de reator UASB e filtros anaeróbios para o tratamento de esgotos sanitários. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais –UFMG. Citado por FREIRE, V.A. (1999). Avaliação do desempenho de um sistema combinado UASB Lodos Ativados no Tratamento de efluentes sanitários e modelagem do sistema de lodos ativados. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais -UFMG, 148 p.
- MACHADO, R.M.G., CHERNICHARO, C.A.L. (1997). Avaliação de desempenho de filtros anaeróbios para o polimento de efluentes de um reator UASB. In: Anais do 19° Congresso Brasileiro de Engenharia Sanitária e Ambiental. Foz do Iguaçu: ABES, p.841-851.
- MARA, D.D. & CAIRNCROSS, S. (1989). Guidelines for the safe use of wastewater and excreta in agriculture and aquaculture: Measures for public health protection. WHO, Geneva. Citado por BASTOS, R.K.X. (1996). Reuso de efluentes. In: Seminário Internacional Tendências no tratamento simplificado de águas residuárias domésticas e industriais. Departamento de Engenharia Sanitária e Ambiental UFMG, p. 223 a 236.
- McCARTY, P.L. (1964a). Anaerobic waste treatment fundamentals, Part two: Environmental requirements and control. Public works for October, p. 123 a 126.
- McCARTY, P.L. (1964b). Anaerobic waste treatment fundamentals, Part four: Process desing.. Public works for December, p. 95 a 98.

- METCALF & EDDY (1991). Wastewater engineering: treatment, disposal and reuse. 3rd ed. McGraw-Hill Inc., 1334 p.
- MIGLINO, L.C.P. (1978). *Dimensionamento de filtros de alta capacidade*. Revista DAE, SABESP São Paulo. Ano XXXVIII nº 115. p.83-86.
- MINAS GERAIS (1986). Deliberação Normativa/COPAM nº 10, 16 de dezembro de 1986. Estabelece normas e padrões para qualidade das águas, lançamento de efluentes nas coleções de água, e dá outras providências.
- NBR-7251 (1982). Agregado em estado solto determinação da massa unitária. Associação Brasileira de Normas Técnicas, abril/1982. Citado por PINTO, J.D.S. (1995). Tratamento de esgotos sanitários através de filtro anaeróbio de fluxo ascendente utilizando escória de alto-forno como meio suporte. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais UFMG, 65 p.
- NBR-9937 (1987). Agregados determinação da abssorção e da massa especifica de agregado graúdo. Associação Brasileira de Normas Técnicas, agosto/1987. Citado por PINTO, J.D.S. (1995). Tratamento de esgotos sanitários através de filtro anaeróbio de fluxo ascendente utilizando escória de alto-forno como meio suporte. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais UFMG, 65 p.
- NOZHEVMIKOVA, A.N., NEKRASOVA, V.K., KEVBRINA, M.V., KOTSYURBENKO, O.R. (2000). Production and oxidation of methane at ambient temperaturer by the microbial population of municipal sludge checks. In: VI Oficina e Seminário Latino Americano de Digestão Anaeróbia. Recife, PE-Brasil, p. 150 a 153.
- OLIVIA, L.C.H. & ROBERTO, F.F. (1996) Produção de lodo em um reator anaeróbio de fluxo ascendente e manta de lodo. In: Anais do XXV Congresso Intermericano AIDIS México: AIDIS.
- PESSÔA, C.A. & JORDÃO, E.P. (1982). Tratamento de esgotos domésticos. 2ª ed. ABES, 529 p.
- PINTO, J.D.S. (1995). Tratamento de esgotos sanitários através de filtro anaeróbio de fluxo ascendente utilizando escória de alto-forno como meio suporte. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais UFMG, 65 p.
- POLITO BRAGA, C.M. (2000). Sistema de tratamento de esgotos por processo anaeróbio e aeróbio: modelagem matemática, instrumentação e controle do processo. Tese de Doutorado. PPGEE-UFMG, 191p.
- POLITO BRAGA, C.M., PENA, R.T., CHERNICHARO, C.A.L., VON SPERLING, M., GUIMARÃES, T.L.V., RODRIGUES, V.I.P. (2000). *Instrumentação e controle de um sistema piloto de tratamento biológico de esgotos*. Revista Engenharia Sanitária e Ambiental. Vol.5 nº1 jan/mar 2000 nº 2 abr/jun 2000 p. 8 a 18.
- QASIM, S.R. (1994). Wastewater Treatment Plants. Planning, design, and operation. The University of Texas at Arlington. p. 54 55, 326 329, 562 563.
- REYNOLDS, T.D. & RICHARDS, P.A. (1995). Unit operations and processes in environmental engineering . 2ª ed. p.798.
- RODRIGUES, V.I.P. (1998). *Instrumentação de uma planta piloto de tratamento de esgotos*. Dissertação de Mestrado. PPGEE-UFMG, 197 p.
- SEGHEZZO, L., CASTAÑEDA, M.L., TRUPIANO, A.P., CONZÁLEZ, S. M., GUERRA, R.E., TORREA, A., CUEVAS, C. M., ZEEMAN, G., LETTINGA, G. (2000). *Anaerobic treatament of presettled sewage in UASB rectores in subtropical regions (Salta, Argentina)*. In: Anais VI Oficina e Seminário Latino Americano de Digestão Anaeróbica. Recife PE, p. 7 a 13.
- SOARES, A.E., VON SPERLING, M., CHERNICHARO, C.A.L., MELO, M.C. (2000). Avaliação da remoção de patogênicos em lagoas de estabilização com diferentes relações geométricas tratando o efluente de um reator UASB compartimentado. In: Pós-tratamento de efluentes de reatores anaeróbios. Coletânea de trabalhos técnicos PROSAB 2, Vol. 1, p. 57 a 66.

- SOUSA, J.T., VAN HAANDEL, A.C., GUIMARÂES, A.V.A. (2000). *Pós-tratramento de efluente anaeróbio através de sistemas wetlands construídos*. In: Pós-tratamento de efluentes de reatores anaeróbios. Coletânea de trabalhos técnicos PROSAB 2, Vol. 1, p. 25 a 32.
- SOUZA, J.I. & FORESTI, E. (1997). Pós tratamento de efluentes pré-tratado anaerobicamente através de reator referencial em Batelada. In: Anais do 19º Congresso Brasileiro de Engenharia Sanitária e Ambiental. p. 180-186.
- SOUZA, L.S. (1998). Avaliação da operação em regime hidráulico transiente de um reator UASB e filtros anaeróbios ascendentes para o tratamento de esgotos sanitários. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais -UFMG, 114 p.
- SOUZA, L.S., CHERNICHARO, C.A.L. (1999). Comparação de desempenho de um sistema UASB/Filtro anaeróbio operando em regimes hidráulicos transiente e permanente. In. Anais do 20º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Rio de Janeiro: ABES, p.288 a 297.
- U.S. ENVIROMENTAL PROTECTION AGENCY, (1974a) July. Wastewater filtration. Design consideration, 48 p.
- U.S. ENVIROMENTAL PROTECTION AGENCY, (1974b) October. Process Design manual for upgrading existing wastewater Treatment Plants, p. 4.1 a 4.50.
- U.S. ENVIROMENTAL PROTECTION AGENCY, (1977) October. *Process Design Manual.* Wastewater Treatment facilities for sewered small communities. p. 9.1 a 9.49.
- VAN DER GRAAF, J.H.J.M., FASTENAU, F.A., VAN BERGEN, A.H.M. (1988). *Practical performance of various systems for small scale wastewater treatment during a two-year field test.* The 14th IAWPRC Biennial International Conference Brighton, Book 1, p. 1 a 12.
- VAN HAANDEL, A.C. & LETTINGA, G. (1994). Tratamento anaeróbio de Esgotos. Um manual para regiões de clima quente.
- VON SPERLING, M. (1995). Princípios do tratamento biológico de águas residuárias. Vol. 1. Introdução à qual das águas e ao tratamento de esgotos. Departamento de Engenharia Sanitária e Ambiental da UFMG, 246 p.
- VON SPERLING, M. (1996). Princípios do tratamento biológico de águas residuárias. Vol. 2. Princípios básicos do tratamento de esgotos. Departamento de Engenharia Sanitária e Ambiental da UFMG, 246 p.
- VON SPERLING, M. (1997), *Princípios do tratamento biológico de águas residuárias*. Vol. 4. Lodos *Ativados*. Departamento de Engenharia Sanitária e Ambiental da UFMG, 416 p.
- WEF (1992). Design of municipal wastewater treatment plants. Manual of Practice nº 8. Vol. 1, p.677 a 733
- ZERBINI, A.M. (2000). Identificação e análise de viabilidade de ovos de helmintos em um sistema de tratamento de esgotos domésticos constituído de reatores anaeróbios e rampas de escoamento superficial. Dissertação de mestrado. Escola de Engenharia da Universidade Federal de Minas Gerais UFMG, 142 p.

Anexos 129

- 9. ANEXOS
- 9.1 Resultados de DQO
- 9.2 Resultados de DBO
- 9.3 Resultados de Sólidos Suspensos
- 9.4 Resultados de Sólidos totais reator UASB e FB
- 9.5 Resultados de pH e OD
- 9.6 Resultados de Temperatura média diária
- 9.7 Resultados de Alcalinidade e Ácidos Graxos Voláteis
- 9.8 Resultados de Nitrogênio e Fósforo
- 9.9 Resultados Microbiológicos
- 9.10 Resultados de Biogás
- 9.11 Resultados de Teor de Metano no Biogás

Anexos 130

		R	esultados d	iários de D	QO (mg	<u>/L)</u>		
Fases	Dias de	DATA		DQOt			DQOf	
	operação		afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
I	1	27/04/99	467	105	105	146	70	64
	3	29/04/99	661			299		
	8	04/05/99	495	48	14			
	10	06/05/99	1119	952	738	305	129	109
	15	11/05/99	1368	960	792	456	163	154
	17	13/05/99	615	221	246	408	25	182
	22	18/05/99	525	95	110	250	35	30
	24	20/05/99	615	221	246	408	25	85
	29	25/05/99	1369	190	83	232	37	42
	31	27/05/99	1230	170	232	300	65	65
	36	01/06/99	465	260	190	290	230	75
	38	03/06/99	525	64	28	114	60	41
	43	08/06/99	524	182	64	205	114	100
	45	10/06/99	456	160	100	274	73	55
	50	15/06/99	426	260	143	215	130	63
	52	17/06/99	727	141	107	485	112	97
	57	22/06/99	1164	247	78	630	155	39
	59	24/06/99		136	257		82	48
	64	29/06/99	488	162	67	452	48	33
	66	01/07/99	464	295	129	619	176	33
	71	06/07/99	881	233	143	643	157	52
	73	08/07/99	928	200	233	904	119	109
	78	13/07/99	462	195	138	577	138	77
	80	15/07/99	278	168	24	422	96	53
	85	20/07/99	180	96	72	91	72	24
	87	22/07/99	228	91	34	10	10	10
II	92	27/07/99	440	170	61	326	87	79
	94	29/07/99	429	111	44	358	81	41
	99	03/08/99	572	106	85	133	87	40
	101	05/08/99	818	111	55	181	70	29
	106	10/08/99	878	115	108	250	61	54
	108	12/08/99	452	162	79	207	72	43
	113	17/08/99	399	22	13	57	10	7
	115	19/08/99	1035	165	53	309	132	38
	120	24/08/99	405	106	79	245	57	28
	122	26/08/99	588	155	65	205	73	47
	127	31/08/99	773	192	113	297	107	58
	129	02/09/99	755	195	137	194	93	41
	134	07/09/99	428	95	25	143	56	24
	136	09/09/99	397	100	85	192	73	49
	141	16/09/99	417	128	144	88	65	89
	143	17/09/99	485	88	70	137	35	43
	148	21/09/99	653	98	59	228	47	30
	150	23/09/99	351	234	156	194	72	65
III	155	28/09/99	422	54	31	216	42	21
	157	30/09/99	419	120	69	127	42	42
	162	05/10/99	769	203	171	277	111	77
	102	33/10/77	10)	203	1/1	211	111	, ,

Anexos 131

continu	ação		Resu	ltados diár	rios de L	OQO (mg/L	<i>a</i>)	
Fases	Dias de	DATA		DQOt			DQOf	
	operação	-	afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
	164	07/10/99	523	150	40	212	30	15
	169	12/10/99	449	137	149	103	29	29
	171	14/10/99	449	148	81	211	113	56
	176	19/10/99	427	269	190	198	74	59
	178	21/10/99	523	110	54	128	46	41
	183	26/10/99	454	110	72	111	55	29
	185	28/10/99	537	161	65	185	56	48
	190	02/11/99	463	194	86	182	28	22
	192	04/11/99	515	63	38	190	38	34
	197	09/11/99	314	198	141	161	59	50
	199	11/11/99	353	90	49	175	49	19
	204	16/11/99	461	207	223	254	179	190
	206	18/11/99	447	81	50	139	45	32
IV	211	23/11/99	430	74	161	104	45	32
	213	25/11/99	898	52	29	146	12	14
	218	30/11/99	401	61	37	105	31	28
	220	02/12/99	287	62	41	56	37	8
	225	07/12/99	387	37	11	94	28	37
	227	09/12/99	432	93	74	98	28	29
	232	14/12/99	294	88	61	150	50	41
	234	16/12/99	335	77	41	94	42	33
	239	21/12/99	364	146	75	209	68	61
	241	23/12/99	547	172	72	235	50	45
	246	28/12/99	454	91	57	206	33	12
	248	30/12/99	817	203	61	246	95	26
	253	04/01/00	413	158	62	162	49	45
	255	06/01/00	619	89	43	222	36	31
V	295	15/02/00	443	187	113	263	50	47
	297	17/02/00	453	132	93	197	73	68
	302	22/02/00	451	137	66	157	68	57
	304	24/02/00	368	187	45	185	22	17
	309	29/02/00	415	164	98	199	81	57
	311	02/03/00	345	100	62	208	48	38
	316	07/03/00	370	77	40	275	70	60
	318	09/03/00	364	80	39	115	24	20
	323	14/03/00	515	143	45	155	37	17
	325	16/03/00	373	100	69	121	77	65
	330	21/03/00	412	191	94	149	96	62
	332	23/03/00	484	92	14	138	78 50	11
	337	28/03/00	629	119	62	55	50	46
	339	30/03/00	251	86	59	138	70	48

continu	ação		Resu	ltados diár	rios de I	OQO (mg/L	<u>,)</u>	
Fases	Dias de	DATA		DQOt			DQOf	
	operação	_	afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
VI	344	04/04/00	389	166	130	173	110	109
	346	06/04/00	491	168	69	147	42	17
	351	11/04/00	286	83	62	167	53	53
	353	13/04/00	426	130	116	152	54	40
	358	18/04/00	342	98	65	123	91	68
	360	20/04/00	396	105	81	154	79	28
	365	25/04/00	328	90	49	205	30	16
	367	27/04/00	366	140	61	104	27	23
	372	02/05/00	323	89	62	120	21	15
	374	04/05/00	532	163	115	259	102	72
	379	09/05/00	553	158	140	292	128	127
	381	11/05/00	659	127	108	336	88	81
	386	16/05/00	340	162	107	110	53	60
	388	18/05/00	468	129	123	220	41	32
	393	23/05/00	441	65	50	101	34	19
	395	25/05/00	570	207	140	113	62	53
	400	30/05/00	543	137	114	154	59	25
	402	01/06/00	601	171	132	193	48	70
	407	06/06/00	476	159	84	192	62	52
	409	08/06/00	472	175	103	204	64	64
	414	13/06/00	357	136	62	141	33	29
VII	416	15/06/00						
	421	20/06/00	470	163	97	227	73	57
	428	27/06/00	537	223	126	179	72	53
	430	29/06/00	550	139	163	197	73	85
	435	04/07/00	381	123	81	130	76	37
	442	11/07/00	520	176	121			
	444	13/07/00	693	204	123	183	130	73
	449	18/07/00	395	167	158	236	149	126
	451	20/07/00	423	91	86	184	50	34
	456	25/07/00	489	147	91	218	54	39
	458	27/07/00	413	120	97	194	115	85
VIII	463	01/08/00	590	199	109	108	30	23
	465	03/08/00	488	153	92	356	48	40
	470	08/08/00	517	185	102	177	61	45
	472	10/08/00	447	83	185	200	70	50
	477	15/08/00	873	265	162	165	87	85
	479	17/08/00	478	131	76	284	82	112
	484	22/08/00	525	108	107	162	86	58
	486	24/08/00	570	180	123	179	93	57
	491	29/08/00	466	101	62	185	93	47
	493	31/08/00				155	44	29

			Resultad	dos de DBO	(mg/L)			
Fases	Dias de	DATA		DBOt			DBOf	
	operação		afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
I	3	29/04/99	326	31	29	168	18	9
	10	06/05/99	383	59	9		20	7
	17	13/05/99	441	38	18	247	13	7
	24	20/05/99	212	36	24	158	13	1
	31	27/05/99	148	88	51	162	27	28
	38	03/06/99	275	29	56	84	10	8
	45	10/06/99	314	97	43	160	26	12
	52	17/06/99	230	166	32	145	32	15
	59	24/06/99	244	79	47	130	21	15
	66	01/07/99	206	70	24	118	21	7
	73	08/07/99	246	76	35	142	43	14
	80	15/07/99	185	75	16	113	32	5
	87	22/07/99	211	74	17	150	29	21
II	94	29/07/99	233	62	61	181	49	20
	101	05/08/99	255	50	22	76	20	11
	108	12/08/99	295	149	14	127	28	11
	115	19/08/99	515	128	39	282	30	18
	122	26/08/99	470	78	49	202	29	12
	129	02/09/99	324	47	18	171	21	11
	136	09/09/99	331	87	34	164	21	11
	143	16/09/99	223	59	23	51	22	6
	150	23/09/99	294	90	27	126	19	15
III	157	30/09/99	327	68	29	150	16	8
	164	07/10/99	216	31	28	143	10	5
	171	14/10/99	290	52	20	116	67	8
	178	21/10/99	182	90	21	72	16	14
	185	28/10/99	214	122	26	180	20	11
	192	04/11/99	301	48	35	163	18	6
	199	11/11/99	154	50	6	106	14	6
	206	18/11/99	301	39	7	113	11	7
IV	213	25/11/99	291	35	19	123	20	8
	220	02/12/99	150	46	13	166	14	7
	227	09/12/99	113	41	9	77	14	4
	234	16/12/99	311	37	8	103	8	4
	241	23/12/99	361	44	18	139	20	10
	248	30/12/99	539	134	46	199	31	17
\mathbf{V}	297	17/02/00	328	98	39	132	29	13
	304	24/02/00	223	42	6	89	21	6
	311	02/03/00	210	41	11	122	10	4
	318	09/03/00	309	56	22	140	27	10
	325	16/03/00	188	34	17	91	13	8
	332	23/03/00	230	58	14	116	11	6
	339	30/03/00	132	35	11	168	23	12

contin	uação		I	Resultados	de DBO	(mg/L)		
Fases	Dias de	DATA		DBOt		_	DBOf	
	operação		afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
VI	346	06/04/00	280	92	24	92	12	14
	353	13/04/00	264	76	72	176	56	10
	360	20/04/00	195	30	14	86	14	3
	367	27/04/00	252	62	21	100	17	10
	374	04/05/00	220	73	14	99	21	8
	381	11/05/00	316	33	22	281	24	13
	388	18/05/00	264	57	26	218	33	29
	395	25/05/00	190	75	25	104	31	10
	402	01/06/00	333	92	45	214	29	13
	409	08/06/00	367	101	60	281	60	29
VII	430	29/06/00	300	72	54	197	27	20
	437	06/07/00	320	108	66	138	21	14
	444	13/07/00	300	64	48	145	31	18
	451	20/07/00	291	90	53	154	44	21
	458	27/07/00	316	89	65	154	29	20
VIII	465	03/08/00	300	99	52	157	28	21
	472	10/08/00	227	130	34	108	36	22
	479	17/08/00	270	120	66	134	35	16
	486	24/08/00	267	101	58	126	34	25
	493	31/08/00	218	91	48	61	23	16

Resultados diários de SS (mg/L)											
Fases	Dias de	DATA	SS	total		S	S fixo		S	S volátil	
	operação		afl. UASB efl.	UASB	efl. FB afl.	. UASB ef	l. UASB	efl. FB af	l. UASB ef	l. UASB	efl. FB
I	1	27/04/99	146	35	24	2	1	1	144	34	23
	3	29/04/99	146	62	22	14	12	6	132	50	16
	8	04/05/99	146	29	8	12	2	0	134	27	8
	10	06/05/99	136	47	19	16	8	3	120	39	16
	15	11/05/99	190	56	23	22	10	3	168	46	20
	17	13/05/99	130	30	12	16	4	1	114	26	11
	22	18/05/99	88	26	10	2	1	0	86	25	10
	24	20/05/99	104	16	5	12	2	1	92	14	4
	29	25/05/99	158	50	16	14	10	3	144	40	13
	31	27/05/99	216	82	32	50	9	3	166	73	29
	36	01/06/99	208	36	38	50	9	29	158	27	9
	38	03/06/99	176	52	39	50	1	6	126	51	33
	43	08/06/99	144	63	26	26	7	5	118	56	21
	45	10/06/99	132	58	18	6	1	3	126	57	15
	50	15/06/99	144	50	13	18	7	2	126	43	11
	52	17/06/99	90	9	4	12	1	1	78	8	3
	57	22/06/99	98	44	10	16	5	3	82	39	7
	59	24/06/99	106	30	19	16	3	3	90	27	16
	64	29/06/99	66	13	5	8	0	1	58	13	4
	66	01/07/99	68	28	5	14	6	1	54	22	4
	71	06/07/99	68	12	2	2	1	0	66	11	2
	73	08/07/99	47	20	3	3	0	0	44	20	3
	78	13/07/99	114	57	14	12	9	1	102	48	13
	80	15/07/99	72	38	4	4	6	3	68	32	1
	85	20/07/99	84	60	6	16	12	1	68	48	5
	87	22/07/99	97	32	4	4	0	0	93	32	4
II	92	27/07/99	42	19	1	10	7	0	32	12	1
	94	29/07/99	80	15	4	14	11	0	66	4	4
	99	03/08/99	82	21	6	8	7	6	74	14	0
	101	05/08/99	94	14	6	0	2	6	94	12	0
	106	10/08/99	108	18	5	20	3	1	88	15	4
	108	12/08/99	120	46	2	14	10	0	106	36	2
	113	17/08/99	42	21	12	12	4	1	30	17	11
	115	19/08/99	82	42	1	0	39	0	82	3	1
	120	24/08/99	48	17	7	4	4	1	44	13	6
	122	26/08/99	137	46	20	13	6	2	124	40	18
	127	31/08/99	114	38	8	10	5	0	104	33	8
	129	02/09/99	102	5	15	14	2	2	88	3	13
	134	07/09/99	86	16	15	8	4	6	78	12	9
	136	09/09/99	112	35	17	16	7	4	96	28	13
	141	14/09/99	102	47	12	10	3	0	92	44	12
	143	16/09/99	110	27	13	40	0	9	70	27	4
	148	21/09/99	308	31	36	40	4	1	268	27	35
	150	23/09/99	104	127	12	14	32	2	90	95	10
III	155	28/09/99	148	33	23	18	4	2	130	29	21
	157	30/09/99	144	19	16	10	2	1	134	17	15
	162	05/10/99	116	69	54	22	11	9	94	58	45

contin	nuação			Re	sultado	s diários	de SS	(mg/L)			
Fases	Dias de	DATA	SS	Stotal		S	S fixo		S	S volátil	
	operação		afl. UASB efl	. UASB	efl. FB a	fl. UASB efl	. UASB	efl. FB af	l. UASB ef	1. UASB	efl. FB
	164	07/10/99	92	20	16	8	0	1	84	20	15
	169	12/10/99	88	38	24	2	8	8	86	30	16
	171	14/10/99	172	48	20	4	8	4	168	40	16
	176	19/10/99	130	70	55	20	8	7	110	62	48
	178	21/10/99	98	56	28	10	10	6	88	46	22
	183	26/10/99	110	33	13	6	5	2	104	28	11
	185	28/10/99	114	41	15	12	8	5	102	33	10
	190	02/11/99	164	116	50	24	28	6	140	88	44
	192	04/11/99	150	31	32	10	5	1	140	26	31
	197	09/11/99	94	26	31	2	0	1	92	26	30
	199	11/11/99	72	26	10	8	0	6	64	26	4
	204	16/11/99	194	28	16	80	19	5	114	9	11
	206	18/11/99	162	29	5	24	6	0	138	23	5
IV	211	23/11/99	76	24	12	4	4	1	72	20	11
	213	25/11/99	186	24	13	30	2	1	156	22	12
	218	30/11/99	80	20	9	8	3	1	72	17	8
	220	02/12/99	100	25	4	6	3	1	94	22	3
	225	07/12/99	28	3	8	6	1	4	22	2	4
	227	09/12/99	64	19	5	52	5	0	12	14	5
	232	14/12/99	90	25	11	38	12	3	52	13	8
	234	16/12/99	100	22	9	12	5	3	88	17	6
	239	21/12/99	216	63	63	40	13	15	176	50	48
	241	23/12/99	256	60	52	46	11	10	210	49	42
	246	28/12/99	88	15	13	8	6	5	80	9	8
	248	30/12/99	270	37	23	18	6	6	252	31	17
	253	04/01/00	92	26	25	62	18	17	30	8	8
	255	06/01/00	118	27	10	6	2	1	112	25	9
\mathbf{V}	295	15/02/00	204	62	44	18	18	6	186	44	38
	297	17/02/00	160	53	34	22	11	1	138	42	33
	302	22/02/00	232	18	15	58	4	1	174	14	14
	304	24/02/00	36	19	4	4	3	0	32	16	4
	309	29/02/00	104	43	11	14	6	0	90	37	11
	311	02/03/00	104	30	11	8	1	4	96	29	7
	316	07/03/00	84	20	13	8	7	5	76	13	8
	318	09/03/00	98	18	3	18	14	1	80	4	2
	323	14/03/00	108	49	10	16	18	1	92	31	9
	325	16/03/00	64	29	13	14	7	1	50	22	12
	330	21/03/00	90	28	11	16	11	5	74	17	6
	332	23/03/00	68	42	12	6	0	5	62	42	7
	337	28/03/00	92	34	11	18	6	1	74	28	10
	339	30/03/00	52	21	6	6	1	1	46	20	5

contir	nuação			Re	sultado	s diários	de SS	(mg/L)			
Fases	Dias de	DATA		SS total		S	S fixo		SS	volátil	
	operação		afl. UASB et	fl. UASB	efl. FB a	fl. UASB ef	l. UASB	efl. FB afl.	UASB efl.	. UASB	efl. FB
VI	344	04/04/00	166	31	14	46	4	3	120	27	11
	346	06/04/00	116	40	23	8	11	2	108	29	22
	351	11/04/00	144	31	29	8	3	9	136	29	20
	353	13/04/00	112	36	63	4	4	11	108	33	52
	358	18/04/00	90	40	23	20	7	3	70	33	20
	360	20/04/00	136	39	24	20	5	4	116	34	20
	365	25/04/00	92	29	16	12	4	1	80	25	15
	367	27/04/00	100	39	25	12	4	3	88	35	23
	372	02/05/00	180	73	35	14	14	4	166	59	31
	374	04/05/00	104	31	17	14	3	6	90	28	11
	379	09/05/00	102	31	13	8	4	3	94	27	10
	381	11/05/00	116	37	20	18	8	5	98	29	15
	386	16/05/00	168	74	52	28	14	8	140	60	44
	388	18/05/00	160	57	40	12	7	6	148	50	34
	393	23/05/00	120	25	14	14	3	1	106	22	13
	395	25/05/00	130	40	24	18	5	4	112	35	20
	400	30/05/00	122	50	23	16	6	3	106	44	20
	402	01/06/00	122	44	32	32	9	12	90	35	20
	407	06/06/00	134	50	23	20	8	4	114	42	19
	409	08/06/00	106	27	18	14	3	1	92	24	17
-	414	13/06/00	110	57	26	20	18	10	90	39	16
VII	416	15/06/00									
	421	20/06/00	128	47	33	18	9	7	110	38	26
	428	27/06/00	151	70	30	34	8	3	117	62	27
	430	29/06/00	124	62	33	20	8	2	104	54	31
	435	04/07/00	132	80	42	28	7	3	104	73	39
	437	06/07/00	122	49	30	6	3	5	116	46	25
	442	11/07/00	184	99	46	54	23	9	130	76	37
	444	13/07/00	104	43	22	50	12	16	54	31	6
	449	18/07/00	222	152	72	42	32	15	180	120	57
	451	20/07/00	84	51	25	20	10	14	64	41	11
	456	25/07/00	103	34	26	13	3	9	90	31	17
	458	27/07/00	112	56	34	22	8	6	90	48	28
VIII	463	01/08/00	204	58	24	46	8	4	158	50	20
	465	03/08/00	170	78	47	38	11	8	132	67	39
	470	08/08/00	138	57	25	14	5	1	124	52	24
	472	10/08/00	116	34	15	20	5	1	96	29	14
	477	15/08/00	110	21	38	12	1	4	98	20	34
	479	17/08/00	160	44	26	20	5	3	140	39	23
	484	22/08/00	112	48	24	44	14	13	68	34	11
	486	24/08/00	144	50	28	80	14	13	64	36	15
	491	29/08/00	112	46	32	16	5	4	96	41	28
	493	31/08/00	58	54	30	4	6	4	54	48	26

	Resu	ıltados d	le Sólidos	Totais - R	Reator UA	SB (perfi	l de sólido	s)
Fases	ponto	Dias de	data da		ST (g/L)		biomassa	Total
		operação	coleta	total	fixo	volátil	STV (g)	(g)
I	T2	36	01/06/99	69,9	28,1	41,8	1269,5	
	T4			29,8	9,1	20,7	734,9	
	T6			52,7	20,6	32,1	1139,6	
	T8			58,1	22,6	35,5	1260,3	
	T10			25,5	10,1	15,4	546,7	
	T12			64,5	27,8	36,7	1302,9	
	T14			24,6	9,2	15,4	273,4	6527,0
I	T2	66	01/07/99	59,6	5,3	54,3	1649,1	
	T4			83,6	19,5	64,1	2275,6	
	T6			63,0	23,0	40,0	1420,0	
	T8			5,8	2,3	3,5	124,3	
	T10			7,5	2,5	5,0	177,5	
	T12			6,3	2,1	4,2	149,1	
	T14			4,9	1,7	3,2	56,8	5852,3
II	T2	99	03/08/99	53,0	17,2	35,8	1087,2	
	T4			64,7	21,5	43,2	1533,6	
	T6			65,8	21,8	44,0	1562,0	
	T8			65,6	21,6	44,0	1562,0	
	T10			14,0	3,4	10,6	376,3	
	T12			11,5	3,5	8,0	284,0	
	T14			13,2	4,1	9,1	161,5	6566,7
II	T2	143	16/09/99	64,5	20,5	44,0	1336,3	
	T4			64,1	21,0	43,1	1530,1	
	T6			69,5	23,3	46,2	1640,1	
	T8			65,8	21,6	44,2	1569,1	
	T10			13,5	4,6	8,9	316,0	
	T12			14,3	4,5	9,8	347,9	
	T14			13,8	4,4	9,4	166,9	6906,2
III	T2	158	01/10/99	59,0	14,3	44,7	1357,5	
	T4			70,8	20,6	50,2	1782,1	
	T6			66,1	22,7	43,4	1540,7	
	T8			45,7	15,2	30,5	1082,8	
	T10			11,7	3,5	8,2	291,1	
	T12			10,7	3,4	7,3	259,2	
	T14			10,7	3,4	7,3	129,6	6442,9
III	T2	191	03/11/99	31,3	10,0	21,3	646,9	
	T4			77,0	20,0	57,0	2023,5	
	T6			51,8	16,9	34,9	1239,0	
	T8			61,8	19,4	42,4	1505,2	
	T12							
	T14							5414,5
IV	T2	232	14/12/99	38,4	12,8	25,6	777,5	
	T4			55,4	18,3	37,1	1317,1	
	T6			58,0	18,7	39,3	1395,2	
	T8			53,7	15,4	38,3	1359,7	
	T10			16,0	5,8	10,2	362,1	
	T12			12,9	4,6	8,3	294,7	
	T14			18,4	6,7	11,7	207,7	5713,7

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

Contin	ıuação	Resulta	dos de Só	ólidos Tota	ais - Reat	or UASB	(perfil de	e sólidos)
Fases	ponto	Dias de	data da		ST (g/L)		biomassa	Total
	•	operação	coleta	total	fixo	volátil	STV (g)	(g)
IV	T2	264	15/01/00	44,7	14,5	30,2	917,2	<u></u>
	T4			65,5	19,8	45,7	1622,4	
	T6			59,8	19,6	40,2	1427,1	
	T8			60,5	18,8	41,7	1480,4	
	T10			14,7	5,2	9,5	337,3	
	T12			13,6	4,6	9,0	319,5	
	T14			16,1	5,6	10,5	186,4	6290,1
V	T2	289	09/02/00	64,5	20,5	44,0	1336,3	
	T4			64,1	21,0	43,1	1530,1	
	T6			69,5	23,3	46,2	1640,1	
	T8			65,8	21,6	44,2	1569,1	
	T10			13,5	4,6	8,9	316,0	
	T12			14,3	4,5	9,8	347,9	
	T14			13,8	4,4	9,4	166,9	6906,2
V	T2	323	14/03/00	91,1	23,0	68,1	2068,2	
	T4			110,3	22,9	87,4	3102,7	
	T6			55,7	21,5	34,2	1214,1	
	T8			51,8	18,8	33,0	1171,5	
	T10			62,2	48,1	14,1	500,6	
	T12			21,3	7,8	13,5	479,3	
	T14			22,2	8,8	13,4	237,9	8774,1
VI	T2	345	05/04/00	71,2	21,6	49,6	1506,4	
	T4			76,0	21,7	54,3	1927,7	
	T6			53,2	18,7	34,5	1224,8	
	T8			61,2	21,5	39,7	1409,4	
	T10			60,1	28,3	31,8	1128,9	
	T12			12,2	4,8	7,4	262,7	
	T14			11,6	4,8	6,8	120,7	7580,4
VI	T2	381	11/05/00	66,5	22,2	44,3	1345,4	
	T4			60,5	21,8	38,7	1373,9	
	T6			52,3	15,6	36,7	1302,9	
	T8			67,6	19,0	48,6	1725,3	
	T10			62,0	16,4	45,6	1618,8	
	T12			12,1	3,9	8,2	291,1	
	T14			13,1	4,1	9,0	159,8	7817,0
VI	T2	411	10/06/00	60,9	19,3	41,6	1263,4	
	T4			62,3	21,6	40,7	1444,9	
	T6			52,0	16,8	35,2	1249,6	
	Т8			62,6	21,2	41,4	1469,7	
	T10			62,3	21,2	41,1	1459,1	
	T12			10,8	3,6	7,2	255,6	
	T14			10,5	3,4	7,1	126,0	7268,2

C	ontinu	ıação	Resultad	los de Sólic	dos Totais	s - Reator	UASB(pe	erfil de sólidos)
Fases	ponto	Dias de	data da		ST (g/L)		biomassa	Total
		operação	coleta	total	fixo	volátil	STV (g)	(g)
VII	T2	437	06/07/00	110,0	16,1	93,9	2851,7	
	T4			64,9	22,4	42,5	1508,8	
	T6			47,9	15,7	32,2	1143,1	
	T8			51,7	18,0	33,7	1196,4	
	T10			64,6	26,9	37,7	1338,4	
	T12			13,0	4,3	8,7	308,9	
	T14			14,6	4,7	9,9	175,7	8522,9
VIII	T2	493	31/08/00	60,2	19,7	40,5	1230,0	
	T4			61,3	20,6	40,7	1444,9	
	T6			55,6	19,1	36,5	1295,8	
	T8			68,6	26,6	42,0	1491,0	
	T10			60,1	20,2	39,9	1416,5	
	T12			7,4	2,5	4,9	174,0	
	T14			3,8	1,4	2,4	42,6	7094,6

Res	ultados de Sólid	los Totais - Filtro	Biológico - Deca	ntador Inter	no
Fases	dias de	data da	S	T (mg/L)	
	operação	coleta	total	fixo	volátil
I	43	08/06/99	-	-	-
	45	10/06/99	436,0	86,0	350,0
	50	15/06/99	12194,0	5080,0	7114,0
	52	17/06/99	4540,0	1812,0	2728,0
	59	24/06/99	1372,0	676,0	696,0
	64	29/06/99	4150,0	1890,0	2260,0
	66	01/07/99	194,0	88,0	106,0
	71	06/07/99	1810,0	907,0	903,0
	73	08/07/99	1475,0	770,0	705,0
	78	13/07/99	1273,0	413,0	860,0
	80	15/07/99	828,0	228,0	600,0
	85	20/07/99	1780,0	613,0	1167,0
	87	22/07/99	1713,0	453,0	1260,0
II	92	27/07/99	4680,0	1280,0	3400,0
	94	29/07/99	970,0	255,0	715,0
	99	03/08/99	1422,0	374,0	1048,0
	101	05/08/99	1020,0	270,0	750,0
	106	10/08/99	2560,0	585,0	1975,0
	108	12/08/99	1360,0	320,0	1040,0
	113	17/08/99	2508,0	784,0	1724,0
	115	19/08/99	2334,0	870,0	1464,0
	120	24/08/99	1764,0	730,0	1034,0
	144	17/09/99	2142,0	818,0	1324,0
	148	21/09/99	1666,0	642,0	1024,0
	150	23/09/99	4778,0	1536,0	3242,0
III	155	28/09/99	2772,0	964,0	1808,0
	162	05/10/99	1538,0	614,0	924,0
	164	07/10/99	2142,0	856,0	1286,
	157	30/09/99	1356,0	560,0	796,
	169	12/10/99	5560,0	1826,0	3734,0
	171	14/10/99	1298,0	422,0	876,0
	176	19/10/99	5468,0	1636,0	3832,0
	178	21/10/99	1928,0	680,0	1248,0
	183	26/10/99	2106,0	664,0	1442,0
	185	28/10/99	1494,0	472,0	1022,0
	190	02/11/99	3628,0	1376,0	2252,0
	192	04/11/99	916,0	496,0	420,0
	197	09/11/99	3110,0	1174,0	1936,0
	199	11/11/99	908,0	446,0	462,0
	204	16/11/99	1246,0	416,0	830,0
	206	18/11/99	756,0	308,0	448,0
IV	211	23/11/99	1404,0	438,0	966,0
-,	213	25/11/99	862,0	266,0	596,0
	218	30/11/99	2580,0	864,0	1716,0
	220	02/12/99	2016,0	624,0	1392,0
	225	07/12/99	4154,0	1418,0	2736,0
	227	09/12/99	1960,0	756,0	1204,0
	232	14/12/99	2830,0	988,0	1842,0
	232	1 T/ 1 4/ J J	2030,0	700,0	1072,0

	Resultado	os de Sólidos	Totais - Filtı	ro Biológ	gico - Deca	antador E	xterno	
Fases	dias de	data da	Descarte de	fundo ST	(mg/L)	Descarte sobi	enadante	ST (mg/L)
	operação	coleta	total	fixo	volátil	total	fixo	volátil
\mathbf{V}	295	15/02/00	4574,0	1261,0	3313,0	2135,0	637,0	1498,0
	297	17/02/00	4051,0	1096,0	2955,0	1855,0	556,0	1299,0
	302	22/02/00	2154,0	626,0	1528,0	1793,0	538,0	1255,0
	304	24/02/00	2320,0	680,0	1640,0	1273,0	425,0	848,0
	309	29/02/00	6651,0	1901,0	4750,0	1004,0	359,0	645,0
	311	02/03/00	3737,0	1261,0	2476,0	775,0	306,0	469,0
	316	07/03/00	4096,0	1323,0	2773,0	730,0	337,0	393,0
	318	09/03/00	2161,0	728,0	1433,0	787,0	357,0	430,0
	323	14/03/00	2519,0	847,0	1672,0	2787,0	582,0	2205,0
	325	16/03/00	2285,0	779,0	1506,0	2527,0	606,0	1921,0
	330	21/03/00	2293,0	735,0	1558,0	2547,0	563,0	1984,0
	332	23/03/00	3115,0	818,0	2297,0	2484,0	522,0	1962,0
	337	28/03/00	3650,0	960,0	2690,0	1109,0	329,0	780,0
	339	30/03/00	3622,0	893,0	2729,0	968,0	318,0	650,0
VI	343	03/04/00	5328,0	1502,0	3826,0	2814,0	844,0	1970,0
	345	05/04/00	6864,0	1800,0	5064,0	1060,0	390,0	670,0
	347	07/04/00	1530,0	482,0	1048,0	2758,0	750,0	2008,0
	350	10/04/00	3760,0	1006,0	2754,0	1908,0	562,0	1346,0
	352	12/04/00	1172,0	390,0	782,0	1692,0	520,0	1172,0
	354	14/04/00	2028,0	644,0	1384,0	812,0	322,0	490,0
	357	17/04/00	2710,0	414,0	2296,0	678,0	296,0	382,0
	359	19/04/00	932,0	354,0	578,0	834,0	300,0	534,0
	364	24/04/00	3390,0	1102,0	2288,0	678,0	414,0	264,0
	366	26/04/00	1648,0	592,0	1056,0	850,0	358,0	492,0
	368	28/04/00	1818,0	642,0	1176,0	6832,0	374,0	6458,0
	371	01/05/00	3412,0	972,0	2440,0	1748,0	472,0	1276,0
	373	03/05/00	2170,0	618,0	1552,0	756,0	242,0	514,0
	375	05/05/00	1316,0	378,0	938,0	598,0	196,0	402,0
	378	08/05/00	1318,0	384,0	934,0	1334,0	408,0	926,0
	380	10/05/00	2272,0	734,0	1538,0	1182,0	426,0	756,0
	382	12/05/00	7616,0	2306,0	5310,0	2272,0	744,0	1528,0
	385	15/05/00	10554,0	3158,0	7396,0	1534,0	612,0	922,0
	387	17/05/00	7858,0	2272,0	5586,0	1496,0	478,0	1018,0
	389	19/05/00	7052,0	1942,0	5110,0	1124,0	392,0	732,0
	392	22/05/00	5016,0	1436,0	3580,0	1648,0	514,0	1134,0
	394	24/05/00	9454,0	3030,0	6424,0	5818,0	812,0	5006,0
	396	26/05/00	5328,0	1580,0	3748,0	1028,0	336,0	692,0
	399	29/05/00	6184,0	1548,0	4636,0	1342,0	422,0	920,0
	401	31/05/00	3960,0	1082,0	2878,0	2052,0	600,0	1452,0
	403	02/06/00	5574,0	1498,0	4076,0	1958,0	560,0	1398,0
	406	05/06/00	5960,0	1540,0	4420,0	864,0	188,0	676,0
	408	07/06/00	12466,0	3442,0	9024,0	1322,0	422,0	900,0
	410	09/06/00	3732,0	1062,0	2670,0	1276,0	436,0	840,0
	413	12/06/00	5312,0	1496,0	3816,0	2138,0	606,0	1532,0

Continu	ıação l	Resultados de S	ólidos Tota	is - Filtro	o Biológi	co - Decan	tador Ex	terno
Fases	dias de	data da	Descarte de	fundo ST	(mg/L)	Descarte sob	renadante S	$ST \overline{(mg/L)}$
	operação	coleta	total	fixo	volátil	total	fixo	volátil
VII	415	14/06/00						
	417	16/06/00	7062,0	2280,0	4782,0	1064,0	354,0	710,0
	420	19/06/00	3392,0	1182,0	2210,0	1540,0	410,0	1130,0
	427	26/06/00	11668,0	3192,0	8476,0	1546,0	564,0	982,0
	429	28/06/00	3822,0	1266,0	2556,0	1467,0	520,0	947,0
	431	30/06/00	4464,0	1244,0	3220,0	1318,0	450,0	868,0
	434	03/07/00	2924,0	1272,0	1652,0	1016,0	476,0	540,0
	436	05/07/00	4900,0	1454,0	3446,0	1156,0	400,0	756,0
	438	07/07/00	1700,0	544,0	1156,0	1416,0	366,0	1050,0
	441	10/07/00	4512,0	1168,0	3344,0	1668,0	328,0	1340,0
	443	12/07/00	2936,0	660,0	2276,0	1216,0	144,0	1072,0
	445	14/07/00	6506,0	1888,0	4618,0	3432,0	1034,0	2398,0
	450	19/07/00	8068,0	2346,0	5722,0	1328,0	262,0	1066,0
	452	21/07/00	5382,0	1482,0	3900,0	2102,0	566,0	1536,0
	455	24/07/00	6252,0	1600,0	4652,0	3650,0	1206,0	2444,0
	457	26/07/00	3514,0	876,0	2638,0	3036,0	814,0	2222,0
VIII	459	28/07/00	2716,0	760,0	1956,0	1444,0	316,0	1128,0
	462	31/07/00	4584,0	1160,0	3424,0	2968,0	660,0	2308,0
	464	02/08/00	2660,0	626,0	2034,0	1240,0	332,0	908,0
	466	04/08/00	5576,0	1248,0	4328,0	1036,0	238,0	798,0
	469	07/08/00	6530,0	1410,0	5120,0	1832,0	342,0	1490,0
	471	09/08/00	5586,0	1238,0	4348,0	1334,0	394,0	940,0
	473	11/08/00	7008,0	1612,0	5396,0	1102,0	396,0	706,0
	476	14/08/00	9006,0	2104,0	6902,0	980,0	278,0	702,0
	478	16/08/00	6412,0	5728,0	684,0	4688,0	292,0	4396,0
	480	18/08/00	4876,0	1422,0	3454,0	1612,0	450,0	1162,0
	483	21/08/00	9958,0	2256,0	7702,0	1738,0	214,0	1524,0
	485	23/08/00	2388,0	630,0	1758,0	3364,0	2444,0	920,0
	492	30/08/00	6318,0	1554,0	4764,0	1408,0	454,0	954,0

Resultados pH e Oxigênio Dissolvido – "medidas pontuais"							
Fases	Dias de	DATA		pН		OD (mg/L)	
	operação		afl. UASB	efl. UASB	efl. FB	efl. FB	
I	1	27/04/99	6,61	6,65	7,66	-	
	3	29/04/99	6,57	6,67	7,40	-	
	8	04/05/99	6,61	6,76	7,55	-	
	10	06/05/99	6,40	6,46	7,22	-	
	15	11/05/99	6,29	6,57	7,49	-	
	17	13/05/99	6,16	6,57	7,47	-	
	22	18/05/99	6,50	6,94	7,64	-	
	24	20/05/99	6,42	6,70	7,41	-	
	29	25/05/99	6,44	6,63	7,31	-	
	31	27/05/99	6,60	6,76	7,48	-	
	36	01/06/99	6,49	6,61	7,50	-	
	38	03/06/99	6,58	6,73	7,31	-	
	43	08/06/99	6,57	6,59	7,27	-	
	45	10/06/99	6,53	6,66	7,38	-	
	50	15/06/99	6,19	6,36	7,35	-	
	51	16/06/99	6,52	6,78	7,40	-	
	52	17/06/99	6,90	7,00	7,68	-	
	56	21/06/99	6,62	6,95	7,25	-	
	57	22/06/99	6,60	6,74	7,25	-	
	58	23/06/99	6,53	6,88	7,13	-	
	59	24/06/99	6,24	6,55	7,10	-	
	63	28/06/99	5,86	6,44	6,63	_	
	64	29/06/99	6,20	6,37	6,91	_	
	65	30/06/99	5,75	6,00	6,40	_	
	66	01/07/99	6,34	6,49	7,25	1,60	
	70	05/07/99	5,86	6,10	7,10	2,78	
	71	06/07/99	6,15	6,35	7,30	1,80	
	72	07/07/99	6,41	6,56	7,44	0,32	
	73	08/07/99	6,46	6,65	6,90	1,56	
	77	12/07/99	6,88	6,80	7,30	0,30	
	78	13/07/99	6,55	6,60	7,35	1,62	
	79	14/07/99	5,67	6,35	7,20	2,09	
	80	15/07/99	6,53	6,61	7,47	1,94	
	84	19/07/99	5,75	6,51	6,92	1,78	
	85	20/07/99	6,59	6,65	7,55	1,63	
	86	21/07/99	5,66	6,03	6,84	1,32	
	87	22/07/99	6,24	6,35	7,52	0,30	
——	91	26/07/99	6,35	6,30	6,50	2,00	
	92	27/07/99	6,76	6,65	7,31	1,76	
	93	28/07/99	5,98	6,25	7,08	1,28	
	94	29/07/99	6,67	6,64	7,58	1,20	
	98	02/08/99	6,30	6,10	6,91	4,30	
	99	03/08/99	6,49	6,55	7,45	4,03	
	100	04/08/99	6,16	6,30	6,61	2,61	
	100	U 1 /UU/ <i>J</i> /	0,10	0,50	0,01	۷,01	

C	ontinuação	Resultados	pH e Oxi	gênio Dissolvido -	- " medidas	pontuais"
Fases	Dias de	DATA		pН		OD (mg/L)
	operação		afl. UASB	efl. UASB	efl. FB	efl. FB
	101	05/08/99	6,33	6,50	7,54	2,54
	105	09/08/99	6,03	5,55	6,49	2,30
	106	10/08/99	6,37	6,50	7,25	2,20
	107	11/08/99	5,87	6,21	7,67	1,28
	108	12/08/99	6,10	6,48	7,16	1,10
	112	16/08/99	6,22	6,49	7,21	2,55
	113	17/08/99	6,41	6,67	7,28	1,96
	114	18/08/99	5,61	6,41	7,21	2,86
	115	19/08/99	6,81	7,10	7,49	2,69
	119	23/08/99	5,92	6,36	7,10	1,62
	120	24/08/99	6,34	6,71	7,41	1,66
	121	25/08/99	6,58	6,70	7,40	1,40
	122	26/08/99	6,40	6,61	7,40	0,53
	123	27/08/00	6,70	6,74	7,62	0,72
	124	28/08/00	6,61	6,70	7,53	
	126	30/08/99	6,22	6,33	6,84	0,78
	127	31/08/99	6,10	6,23	6,81	0,47
	128	01/09/99	6,11	6,59	7,21	2,06
	129	02/09/99	6,33	6,67	7,47	0,98
	133	06/09/99	6,29	6,43	7,21	1,54
	134	07/09/99	6,26	6,51	7,16	0,95
	135	08/09/99	6,37	6,62	7,27	0,98
	136	09/09/99	6,35	6,58	7,51	0,15
	140	13/09/99	6,23	6,60	7,29	1,95
	142	15/09/99	6,26	6,37	7,27	0,40
	143	16/09/99	6,26	6,54	7,30	0,28
	144	17/09/99	6,46	6,68	7,58	0,45
	147	20/09/99	6,30	6,58	7,46	1,29
	148	21/09/99	6,37	6,71	7,62	1,21
	149	22/09/99	6,34	6,63	7,56	1,15
	150	23/09/99	6,69	6,56	7,37	1,20
	154	27/09/99	6,39	6,82	7,51	1,60
	155	28/09/99	6,04	6,70	7,68	0,94
III	156	29/09/99	6,04	6,46	7,31	0,99
	157	30/09/99	6,16	6,38	7,15	0,97
	161	04/10/99	6,67	6,33	7,57	2,09
	162	05/10/99	6,48	6,47	7,98	2,71
	163	06/10/99 07/10/99	5,59	6,50	7,29	1,53
	164		6,55	6,80	7,59	2,19
	168	11/10/99	6,38	6,48	7,29	1,89
	169 170	12/10/99 13/10/99	6,25	6,43	7,12 7,36	1,39
	170 171	13/10/99	6,36 6,40	6,41 6,47	7,36	1,20 1,05
		18/10/99	6,40 6,40		7,26 7,62	
	175	10/10/77	0,40	6,51	7,62	2,10

(continuação	Resultados	pH e Oxigên	nio Dissolvido -	- " medidas p	ontuais''
Fases	Dias de	DATA		рН		OD (mg/L)
	operação		afl. UASB	efl. UASB	efl. FB	efl. FB
_	176	19/10/99	6,59	6,49	7,38	2,00
	177	20/10/99	6,18	6,63	7,51	0,88
	178	21/10/99	6,70	6,82	7,66	2,50
	179	22/10/99	6,58	6,64	7,59	0,98
	182	25/10/99	6,24	6,35	7,28	2,21
	183	26/10/99	6,35	6,33	7,32	1,80
	184	27/10/99	5,82	6,37	7,02	3,31
	185	28/10/99	6,52	6,91	7,76	2,20
	189	01/11/99	6,09	6,44	7,39	1,50
	190	02/11/99	6,21	6,66	7,69	2,00
	191	03/11/99	6,09	6,38	7,61	1,89
	192	04/11/99	6,11	7,03	7,68	1,60
	196	08/11/99	6,35	6,22	7,19	2,40
	197	09/11/99	6,48	6,57	7,42	1,98
	198	10/11/99	5,97	6,75	7,85	1,64
	199	11/11/99	6,62	6,85	7,61	1,83
	203	15/11/99	6,44	6,12	7,21	1,83
	204	16/11/99	6,07	6,46	7,18	0,86
	205	17/11/99	6,20	6,08	7,02	1,37
	206	18/11/99	5,79	6,24	7,17	0,89
	211	23/11/99	6,44	6,34	7,09	0,78
IV	212	24/11/99	6,62	6,50	7,20	1,10
	213	25/11/99	6,67	6,50	7,49	0,86
	217	29/11/99	6,46	6,40	7,00	1,10
	218	30/11/99	6,56	6,30	7,11	0,64
	219	01/12/99	6,50	6,51	7,32	0,64
	220	02/12/99	6,43	6,53	7,37	0,60
	224	06/12/99	6,04	6,15	6,96	1,33
	225	07/12/99	6,28	6,46	7,31	0,78
	226	08/12/99	5,80	6,32	6,97	1,71
	227	09/12/99	6,68	6,46	7,28	0,58
	231	13/12/99	6,62	6,43	7,26	2,06
	232	14/12/99	6,55	6,74	7,25	2,00
	233	15/12/99	6,29	6,15	7,30	2,21
	234	16/12/99	6,28	6,68	7,22	1,46
	238	20/12/99	6,53	6,51	7,41	2,40
	239	21/12/99	5,92	5,95	7,08	2,18
	240	22/12/99	6,45	6,36	7,15	2,00
	241	23/12/99	5,92	6,04	6,80	1,25
	245	27/12/99	6,48 5.08	6,28	7,16	0,68
	246	28/12/99	5,98	6,03	7,04	0,37
	247	29/12/99	5,95 5,91	6,17	6,58	1,00
	248	30/12/99	5,81	6,01	6,84	0,30
	252	03/01/00	6,25	6,32	7,20	1,49

cor	tinuação	Resultados p	H e Oxigêni	o Dissolvido -	- " medidas į	pontuais"
Fases	Dias de	DATA		рН		OD (mg/L)
	operação		afl. UASB	efl. UASB	efl. FB	efl. FB
	253	04/01/00	6,32	6,28	7,25	1,55
	254	05/01/00	6,52	6,68	7,29	2,19
-	255	06/01/00	6,53	6,62	7,41	1,61
\mathbf{V}	297	17/02/00	5,81	6,40	7,00	0,90
	298	18/02/00	6,70	6,13	6,95	1,30
	302	22/02/00	6,44	6,50	7,34	1,01
	304	24/02/00	6,23	6,29	7,10	1,00
	306	28/02/00	6,05	6,38	6,99	1,16
	307	29/02/00	6,05	6,20	7,07	0,78
	310	01/03/00	6,25	6,29	6,88	1,32
	311	02/03/00	6,17	6,14	7,00	1,31
	315	06/03/00	6,32	6,28	6,95	0,65
	316	07/03/00	6,49	6,27	7,21	0,57
	317	08/03/00	6,41	6,14	7,02	1,02
	318	09/03/00	5,58	6,13	6,80	0,80
	322	13/03/00	6,44	6,42	7,19	4,70
	323	14/03/00	6,42	6,38	7,14	2,50
	324	15/03/00	6,31	6,62	7,16	4,20
	325	16/03/00	6,30	6,48	7,34	2,73
	329	20/03/00	6,74	6,53	7,15	0,81
	330	21/03/00	6,40	6,44	7,02	0,53
	331	22/03/00	5,88	6,48	7,08	0,78
	332	23/03/00	5,96	6,14	6,96	0,68
	336	27/03/00	5,95	6,38	7,02	4,02
	337 338	28/03/00	6,30	6,47	7,26	3,50
	339	29/03/00 30/03/00	6,44	6,26	7,07 7,10	1,39
	343	03/04/00	6,10 5,78	6,27 5,93	6,94	0,88 1,02
	344	04/04/00	5,78	6,21	6,98	0,99
VI	346	06/04/00	6,06	6,29	7,07	1,58
V.	350	10/04/00	5,90	6,02	7,24	0,63
	351	11/04/00	6,45	6,58	7,57	0,78
	352	12/04/00	6,28	6,38	7,01	1,80
	353	13/04/00	7,60	6,72	7,12	1,57
	357	17/04/00	5,93	6,90	7,12	3,87
	358	18/04/00	5,94	6,25	7,25	3,15
	359	19/04/00	6,91	6,61	7,29	3,69
	360	20/04/00	6,60	6,62	7,22	2,30
	364	24/04/00	6,55	6,71	7,70	1,02
	365	25/04/00	6,33	6,13	7,13	0,77
	366	26/04/00	6,55	6,28	7,38	0,90
	367	27/04/00	6,59	6,48	7,41	0,87
	371	01/05/00	6,56	6,40	7,20	0,78
	372	02/05/00	6,14	6,17	6,94	0,98

C	ontinuação	Resultados	pH e Oxigên	io Dissolvido	- " medidas ı	pontuais"
Fases	Dias de	DATA		рН		OD (mg/L)
	operação		afl. UASB	efl. UASB	efl. FB	efl. FB
	373	03/05/00	6,51	6,58	7,30	0,99
	374	04/05/00	6,42	6,62	7,51	0,38
	378	08/05/00	6,26	6,38	7,07	0,77
	379	09/05/00	6,19	6,45	7,45	0,32
	380	10/05/00	6,47	6,73	7,48	0,62
	381	11/05/00	6,00	6,12	7,03	0,22
	385	15/05/00	5,86	6,55	7,12	0,81
	386	16/05/00	6,10	6,23	7,01	1,38
	387	17/05/00	6,38	6,20	6,93	1,86
	388	18/05/00	6,10	6,20	7,00	0,61
	392	22/05/00	6,21	6,20	7,01	0,89
	393	23/05/00	6,19	6,16	7,20	0,95
	394	24/05/00	6,65	6,70	7,35	1,06
	395	25/05/00	6,04	6,02	7,13	0,75
	399	29/05/00	6,51	6,07	7,01	0,32
	400	30/05/00	5,79	5,86	6,84	0,65
	401	31/05/00	5,82	6,15	6,91	0,86
	402	01/06/00	6,12	6,02	6,87	0,77
	406	05/06/00	6,08	6,04	6,90	0,73
	407	06/06/00	6,91	6,38	7,15	0,78
	408	07/06/00	6,06	6,27	6,98	1,26
	409	08/06/00	6,54	6,32	7,01	0,87
	413	12/06/00	6,17	6,23	6,99	0,90
	414	13/06/00	6,74	6,46	7,24	0,91
VII	420	19/06/00	6,45	6,51	7,29	0,92
	421	20/06/00	6,66	6,70	7,43	0,80
	422	21/06/00	6,60	6,75	7,30	0,78
	427	26/06/00	6,77	6,77	7,52	0,72
	428	27/06/00	6,61	6,63	7,39	0,70
	429	28/06/00	6,90	6,83	7,73	0,30
	430	29/06/00	6,27	6,86	7,28	1,38
	434	03/07/00	6,30	6,21	7,08	1,29
	435	04/07/00	6,57	6,46	6,72	1.50
	436	05/07/00	6,48	6,31	7,29	1,59
	437	06/07/00	6,51	6,25	7,09	1,70
	441	10/07/00	6,56	6,52	7,59	2,88
	442	11/07/00	6,51	6,81	7,21	1,92
	443	12/07/00	6,84	6,80	7,41	
	444	13/07/00	6,33	6,28	7,45	1.00
	448	17/07/00	6,30	6,36	7,38	1,99
	449	18/07/00	6,62	6,52	6,53	3,09
	450	19/07/00	6,98	6,84	7,53	2 45
	451	20/07/00	6,81	6,80	7,57	3,45
	455	24/07/00	6,97	6,51	7,73	1,71

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

co	ntinuação	Resultados p	H e Oxigêni	io Dissolvido -	- " medidas	pontuais''
Fases	Dias de	DATA		рН		OD (mg/L)
	operação		afl. UASB	efl. UASB	efl. FB	efl. FB
	456	25/07/00	6,88	6,93	7,64	1,98
	457	26/07/00	6,62	6,72	7,35	1,91
	458	27/07/00	6,79	6,74	7,36	0,90
VIII	462	31/07/00	5,94	6,85	7,29	1,90
	463	01/08/00	6,45	6,52	6,48	1,00
	464	02/08/00	6,55	6,80	7,39	1,15
	465	03/08/00	6,74	6,66	7,37	0,49
	469	07/08/00	6,05	6,22	7,51	1,16
	470	08/08/00	6,99	6,86	7,82	1,06
	471	09/08/00	7,17	7,06	7,63	0,66
	472	10/08/00	6,37	6,20	7,03	0,62
	476	14/08/00	6,33	6,10	6,83	1,49
	477	15/08/00	6,45	6,42	7,18	1,31
	478	16/08/00	6,62	6,88	7,30	1,69
	479	17/08/00	6,60	6,42	7,07	1,69
	483	21/08/00	6,39	6,46	7,14	1,41
	484	22/08/00	6,73	6,64	7,51	
	485	23/08/00	6,61	6,57	7,60	1,52
	486	24/08/00	6,65	6,60	7,55	1,68
	490	28/08/00	6,41	6,34	7,03	1,90
	491	29/08/00	6,57	6,44	7,12	1,81
	492	30/08/00	6,50	6,52	7,17	1,69
	493	31/08/00	7,15	6,92	7,42	1,72

Resultados Temperatura média diária								
Fases	Dias de	DATA		Temperatui	ra (°C)		diferença	
	operação		afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB	
I	1	27/04/99	24,40	23,36	21,96			
	3	29/04/99	23,26	22,36	21,69			
	8	04/05/99	24,26	23,15	22,45			
	10	06/05/99	24,60	23,55	22,90			
	15	11/05/99	23,53	22,35	21,08			
	17	13/05/99	24,40	23,38	22,98			
	22	18/05/99	21,10	20,09	19,54			
	24	20/05/99	21,81	21,29	20,74			
	29	25/05/99	21,54	20,95	20,74			
	31	27/05/99	21,11	20,53	19,66			
	36	01/06/99	20,20	19,90	18,76			
	38	03/06/99	20,95	20,38	19,90			
	43	08/06/99	21,73	21,16	20,80			
	45	10/06/99	21,00	20,51	20,20			
	50	15/06/99	19,30	19,20	19,00			
	51	16/06/99	19,60	19,30	18,80			
	52	17/06/99	20,50	20,20	19,30			
	56	21/06/99	20,60	20,70	20,30			
	57	22/06/99	20,00	19,80	19,10			
	58	23/06/99	19,80	19,50	18,90			
	59	24/06/99	19,70	19,60	19,10			
	63	28/06/99	19,10	19,50	19,60			
	64	29/06/99	19,30	19,30	18,80			
	65	30/06/99	20,50	20,10	20,10			
	66	01/07/99	20,00	20,20	20,00			
	70	05/07/99	19,00	19,60	19,60			
	71	06/07/99	17,80	17,70	18,00			
	72	07/07/99	21,40	21,70	21,50			
	73	08/07/99	20,50	20,30	20,30			
	77	12/07/99	19,70	19,90	19,60			
	78	13/07/99	17,80	17,70	17,20			
	79	14/07/99	18,50	18,30	18,20			
	80	15/07/99	19,60	19,40	19,60			
	84	19/07/99	20,60	20,00	19,70			
	85	20/07/99	19,90	19,80	19,80			
	86	21/07/99	18,40	18,50	18,50			
	87	22/07/99	19,20	19,00	19,20			
— II	91	26/07/99	21,00	20,90	20,80			
	92	27/07/99	20,90	20,90	20,80			
	93	28/07/99	20,50	20,70	20,50			
	94	29/07/99	21,30	21,00	21,00			
	98	02/08/99	19,80	19,70	18,80			
	99	03/08/99	19,00	19,70	19,20			
	100	03/08/99	19,00	18,90	18,90			
	100	04/08/99	19,00	18,50	18,40			
	101	09/08/99	21,00	19,50	19,80			
	103	10/08/99	19,90	19,50	19,80			
	100	10/08/99	20,00	19,30	19,40			
	107	12/08/99	20,00	19,40	19,20			
	100	14/00/99	20,10	17,00	17,40		-	

	continu	ação	Resultados Te	mperatura m	édia diári	a	
Fases	Dias de	DATA		Temperatur	ra (°C)		diferença
	operação		afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB
	112	16/08/99	16,50	16,90	16,90		
	113	17/08/99	16,80	17,00	16,60		
	114	18/08/99	15,60	15,80	15,60		
	115	19/08/99	16,00	16,20	15,90		
	119	23/08/99	20,60	18,40	19,10		
	120	24/08/99	18,60	18,50	18,80		
	121	25/08/99	21,00	22,00	20,00	20,47	0,47
	122	26/08/99	21,30	21,40	21,60	19,97	-1,63
	123	27/08/00	20,80	20,56	19,57	20,93	1,36
	124	28/08/00	21,00	20,88	21,54	21,82	0,28
	126	30/08/99	24,50	23,80	23,30		
	127	31/08/99	24,00	23,60	23,10		
	128	01/09/99	23,00	22,50	22,40		
	129	02/09/99	21,10	20,50	20,40		
	133	06/09/99	21,80	21,60	21,10		
	134	07/09/99	21,60	23,57	23,29	22,75	-0,54
	135	08/09/99	24,10	23,68	23,58	23,25	-0,33
	136	09/09/99	24,40	24,06	24,26	23,54	-0,73
	137	10/09/99		23,47	23,21	22,90	-0,31
	138	11/09/99		23,05	22,17	21,95	-0,22
	139	12/09/99		22,65	21,95	21,64	-0,31
	140	13/09/99	19,00	23,33	21,34	18,90	-2,44
	141	14/09/99		22,28	22,99	22,39	-0,60
	142	15/09/99	23,90	21,98	22,03	20,02	-2,00
	143	16/09/99	23,20	24,28	24,03	23,14	-0,89
	144	17/09/99	24,60	23,25	22,71	21,14	-1,57
	145	18/09/99		23,08	22,17	20,83	-1,34
	146	19/09/99	22,10	23,23	22,43	21,53	-0,89
III	156	29/09/99	23,80				
	157	30/09/99	23,00				
	161	04/10/99	21,50	22,96	22,05	20,58	-1,46
	162	05/10/99	18,80	21,95	20,99	19,87	-1,11
	163	06/10/99	18,00	21,07	20,38	19,79	-0,59
	164	07/10/99	18,80	20,90	20,21	19,59	-0,62
	165	08/10/99		21,92	21,59	22,73	1,14
	166	09/10/99		23,35	23,15	24,92	1,77
	167	10/10/99		23,91	23,65	25,10	1,45
	168	11/10/99	22,60	23,32	23,50	24,31	0,81
	169	12/10/99	23,50	23,82	23,89	23,03	-0,87
	170	13/10/99	22,40	23,31	23,00	22,97	-0,03
	171	14/10/99	22,40	23,33	23,21	22,83	-0,38
	172	15/10/99	25,7	23,57	22,37	22,21	-0,16
	176	19/10/99	23,1	•	•	•	•
	177	20/10/99	22,3				
	178	21/10/99	22,6				
	179	22/10/99	24,8				
	182	25/10/99	21,4				
			•				

	continuação Resultados Temperatura média diária							
Fases	Dias de	DATA		Temperatur			diferença	
	operação		afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB	
	183	26/10/99	18,90	21,51	21,40	21,34	-0,06	
	185	28/10/99	18,40	21,58	21,09	22,35	1,26	
	186	29/10/99	20,10	21,92	21,56	23,25	1,69	
	187	30/10/99	,	22,77	22,44	24,49	2,05	
	188	31/10/99		22,62	22,50	22,46	-0,04	
	189	01/11/99	19,40	22,47	22,47	23,09	0,62	
	190	02/11/99	19,70	22,70	21,73	23,75	2,02	
	192	04/11/99	21,00	22,96	22,05	20,58	-1,46	
	193	05/11/99	21,60	21,95	20,99	19,86	-1,13	
	194	06/11/99	21,00	21,09	20,38	19,77	-0,62	
	195	07/11/99		20,91	20,21	19,58	-0,64	
	196	08/11/99	20,40	21,92	21,56	22,65	1,09	
	197	09/11/99	20,60	23,35	23,14	24,88	1,74	
	198	10/11/99	20,70	23,91	23,64	25,06	1,42	
	199	11/11/99	19,00	23,33	23,49	24,27	0,78	
	200	12/11/99	17,00	23,85	23,19	23,00	-0,19	
	201	13/11/99		23,31	23,18	22,97	-0,19	
	202	14/11/99		23,33	23,10	24,13	0,92	
	202	15/11/99	21,10	22,97	21,44	22,42	0,92	
	203	16/11/99	20,60	23,11	22,10	22,75	0,65	
	204	18/11/99	21,50	23,11	22,45	24,57	2,12	
IV	207	19/11/99	21,00	23,62	23,05	24,82	1,76	
1 V	207	20/11/99	21,00	22,23	21,50	24,82	1,76	
	208	20/11/99		22,23	22,20	21,99	-0,20	
	210					21,99		
		22/11/99	22.60	22,66	21,99		2,05	
	211	23/11/99	22,60	23,92	23,59	26,44	2,85	
	212	24/11/99	26,30	24,05	23,42	24,68	1,27	
	213	25/11/99	21,80	24,50	23,86	25,71	1,85	
	214	26/11/99		24,91	24,36	26,26	1,90	
	215	27/11/99		24,47	23,93	25,77	1,85	
	216	28/11/99	22.20	21,58	21,09	21,55	0,46	
	217	29/11/99	23,30	21,92	21,56	22,45	0,89	
	218	30/11/99	23,00	22,77	22,44	23,69	1,25	
	219	01/12/99	23,50	23,22	22,73	25,57	2,84	
	220	02/12/99	22,00	24,42	23,61	24,89	1,28	
	221	03/12/99		24,49	23,80	25,20	1,41	
	222	04/12/99		24,48	23,77	24,29	0,52	
	223	05/12/99	-0 -0	23,07	22,58	22,14	-0,44	
	224	06/12/99	20,50	22,44	21,68	22,18	0,50	
	225	07/12/99	23,00	23,38	22,76	23,76	1,00	
	226	08/12/99	21,60	23,34	22,91	23,56	0,64	
	227	09/12/99	23,00	23,68	23,10	23,97	0,87	
	228	10/12/99		24,44	23,94	25,81	1,87	
	229	11/12/99		25,19	24,54	26,11	1,57	
	230	12/12/99		24,15	23,55	24,83	1,28	
	231	13/12/99	23,80	24,24	23,66	24,76	1,10	
	232	14/12/99	22,20	24,58	23,92	25,24	1,32	
	233	15/12/99	24,30	25,18	24,50	26,40	1,90	
	234	16/12/99	23,40	25,67	24,86	26,44	1,58	

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

	continuação Resultados Temperatura média diária							
Fases	Dias de	DATA		Temperatur	ra (°C)		diferença	
	operação		afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB	
	235	17/12/99		25,81	24,63	25,16	0,53	
	236	18/12/99		25,79	24,62	25,13	0,52	
	237	19/12/99		26,70	25,33	29,26	3,93	
	238	20/12/99	26,30	26,35	25,30	27,28	1,98	
	239	21/12/99	25,00	26,32	25,35	27,31	1,96	
	240	22/12/99	28,50	25,67	24,88	26,54	1,66	
	241	23/12/99	26,00	23,52	22,60	22,09	-0,51	
	242	24/12/99		24,00	22,83	24,17	1,34	
	243	25/12/99		24,70	23,78	25,44	1,66	
	244	26/12/99		24,91	23,81	25,22	1,41	
	245	27/12/99	27,50	25,06	23,98	25,35	1,37	
	246	28/12/99	25,00	25,39	24,38	26,91	2,53	
	247	29/12/99	25,30	26,13	25,32	27,56	2,24	
	248	30/12/99	23,80	24,85	23,76	24,81	1,05	
	253	04/01/00	22,90	23,77	23,06	22,05	-1,01	
	254	05/01/00	22,10	24,43	23,67	22,67	-1,00	
	255	06/01/00	24,00	25,09	24,19	23,19	-1,00	
	256	07/01/00	24,20	25,30	24,19	23,21	-0,97	
	259	10/01/00						
V	293	13/02/00		26,73	23,37	25,21	1,83	
	294	14/02/00		26,21	23,90	27,24	3,34	
	295	15/02/00		25,87	23,74	26,71	2,97	
	297	17/02/00	24,50	25,18	23,67	26,83	3,17	
	298	18/02/00	23,90	24,49	23,30	25,75	2,45	
	299	19/02/00		24,69	24,06	25,48	1,42	
	300	20/02/00		25,50	25,12	28,35	3,23	
	301	21/02/00		25,24	24,90	28,78	3,88	
	302	22/02/00	25,00	26,14	25,75	29,67	3,92	
	303	23/02/00		25,09	24,61	27,06	2,45	
	304	24/02/00	24,00	25,28	24,81	26,98	2,17	
	308	28/02/00	25,30	26,09	25,69	29,67	3,98	
	310	01/03/00		25,48	24,66	25,47	0,81	
	311	02/03/00	24,30	25,09	24,30	25,26	0,96	
	312	03/03/00	24,90	24,91	24,16	25,54	1,38	
	313	04/03/00	22,90					
	314	05/03/00						
	315	06/03/00		24,82	24,05	24,02	-0,03	
	316	07/03/00	24,50	25,26	24,45	25,59	1,14	
	317	08/03/00	25,20	26,13	24,17	24,73	0,56	
	318	09/03/00	24,80	24,50	23,52	23,90	0,38	
	319	10/03/00	24,00					
	320	11/03/00						
	321	12/03/00						
	322	13/03/00		23,09	22,55	23,23	0,68	
	323	14/03/00	23,10	23,13	22,33	22,44	0,11	
	324	15/03/00	23,20	23,64	21,75	23,39	1,64	
	325	16/03/00	23,90					
	326	17/03/00		23,54	24,09			

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

	continuação Resultados Temperatura média diária								
Fases	Dias de	DATA		Temperatur	ra (°C)		diferença		
	operação		afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB		
	327	18/03/00	24,10	24,17	22,98	23,37	0,39		
	328	19/03/00		23,80	22,26	23,87	1,62		
	329	20/03/00	25,30	24,10	23,29	25,08	1,79		
	330	21/03/00	25,20	24,29	24,07	24,61	0,54		
	331	22/03/00	25,50	24,57	24,27	25,24	0,98		
	332	23/03/00	24,60	24,85	24,50	25,65	1,15		
	333	24/03/00		24,89	24,23	25,29	1,06		
	334	25/03/00		25,00	24,74	25,96	1,22		
	335	26/03/00		25,24	25,02	26,16	1,13		
	336	27/03/00	26,50	25,16	24,92	26,00	1,08		
	337	28/03/00	25,70	25,19	24,98	26,16	1,18		
	338	29/03/00	24,70	25,24	25,02	26,42	1,40		
	339	30/03/00	24,80	25,36	24,80	25,90	1,10		
	340	31/03/00		24,90	24,32	25,11	0,79		
VI	341	01/04/00		24,96	24,58	25,68	1,09		
	342	02/04/00		25,08	24,69	25,54	0,85		
	343	03/04/00	23,70	24,45	23,86	24,10	0,24		
	344	04/04/00	21,90	23,91	23,20	23,60	0,40		
	345	05/04/00		23,94	23,22	23,67	0,45		
	346	06/04/00	22,80	24,30	23,52	24,56	1,04		
	347	07/04/00		24,51	23,66	24,95	1,29		
	348	08/04/00		24,93	22,88	25,37	2,49		
	349	09/04/00		24,99	24,38	25,61	1,23		
	350	10/04/00	24,10	24,86	24,21	25,22	1,00		
	351	11/04/00	24,60	24,96	24,27	25,24	0,97		
	352	12/04/00	20,60	24,95	24,40	25,71	1,31		
	353	13/04/00	24,90	25,28	24,45	25,52	1,08		
	354	14/04/00		25,24	24,22	25,73	1,51		
	355	15/04/00		25,57	23,61	25,85	2,24		
	356	16/04/00		24,86	22,93	24,47	1,54		
	357	17/04/00	23,50	24,35	23,38	24,64	1,26		
	358	18/04/00	23,90	24,47	23,68	24,16	0,48		
	359	19/04/00	24,00	24,13	23,47	23,88	0,41		
	360	20/04/00	23,70	24,25	23,72	23,21	-0,52		
	361	21/04/00		24,29	21,82	23,60	1,78		
	362	22/04/00		23,41	20,18	22,58	2,39		
	363	23/04/00		23,54	20,75	23,04	2,29		
	364	24/04/00	23,00	23,41	21,83	23,27	1,44		
	365	25/04/00	21,90	23,59	22,44	22,78	0,34		
	366	26/04/00	22,00	22,91	22,07	22,19	0,13		
	367	27/04/00	22,40	22,81	22,08	22,44	0,36		
	368	28/04/00		22,81	22,15	22,72	0,57		
	369	29/04/00		23,16	22,52	23,53	1,01		
	370	30/04/00	22.72	23,39	22,92	23,86	0,94		
	371	01/05/00	23,70	23,51	23,02	23,96	0,93		
	372	02/05/00	22,10	23,38	23,01	23,52	0,51		
	373	03/05/00	22,20	23,35	23,03	23,82	0,79		
	374	04/05/00	22,90	23,50	23,17	23,15	-0,02		

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

	continu	ação R	esultados Te	mperatura n	iédia diár	ia	
Fases	Dias de	DATA		Temperatur	ra (°C)		diferença
	operação	•	afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB
	375	05/05/00		23,58	23,00	23,73	0,73
	376	06/05/00		22,96	22,23	22,23	0,01
	377	07/05/00		24,42	24,28	25,72	1,43
	378	08/05/00	24,30	24,20	23,97	24,98	1,01
	379	09/05/00	23,20	24,23	23,59	23,92	0,34
	380	10/05/00	22,00	23,04	22,23	21,46	-0,76
	381	11/05/00	21,20	22,00	20,81	20,56	-0,25
	382	12/05/00		20,99	19,25	20,96	1,71
	383	13/05/00		19,83	19,11	20,72	1,61
	384	14/05/00		20,55	20,20	21,36	1,15
	385	15/05/00	21,30	21,98	21,51	22,52	1,01
	386	16/05/00	19,50	22,23	22,10	22,87	0,77
	387	17/05/00	22,60	22,28	22,13	22,81	0,68
	388	18/05/00	22,40	21,49	20,25	21,36	1,11
	389	19/05/00		20,75	19,62	22,34	2,71
	390	20/05/00					
	391	21/05/00		20,92	20,35	20,43	0,08
	392	22/05/00	22,50	21,06	20,32	19,93	-0,39
	393	23/05/00	21,10	20,61	19,97	19,50	-0,47
	394	24/05/00	20,60	20,80	20,25	20,02	-0,23
	395	25/05/00	20,80	21,17	20,65	21,45	0,80
	396	26/05/00		21,64	21,22	22,33	1,11
	397	27/05/00		21,68	21,07	21,70	0,62
	398	28/05/00		21,64	21,22	22,33	1,11
	399	29/05/00	19,30	21,68	21,07	21,70	0,62
	400	30/05/00	19,80				
	401	31/05/00	20,80				
	402	01/06/00	22,00	22,18	22,09	23,85	
	403	02/06/00		22,46	22,06	23,97	1,91
	404	03/06/00		22,06	21,98	23,21	1,23
	405	04/06/00		21,51	21,18	21,70	0,52
	406	05/06/00	20,90	20,73	20,16	20,06	-0,10
	407	06/06/00	21,50	20,18	19,56	19,82	0,27
	408	07/06/00	19,50	20,12	19,70	20,40	0,70
	409	08/06/00	21,10	20,44	20,34	21,42	1,08
	410	09/06/00		20,90	20,64	21,83	1,19
	411	10/06/00		20,79	20,39	21,46	1,07
	412	11/06/00					
	413	12/06/00	20,30	20,60	20,34	21,71	1,37
	414	13/06/00	22,00	20,41	20,23	22,18	1,95
VII	415	14/06/00		20,77	19,74	22,43	2,70
	416	15/06/00		20,92	19,67	21,71	2,04
	417	16/06/00		20,87	20,32	21,53	1,21
	418	17/06/00		20,72	20,45	21,89	1,44
	419	18/06/00	21.20	20,48	20,36	21,70	1,34
	420	19/06/00	21,30	21,14	20,87	22,14	1,27
	421	20/06/00	21,90	21,81	21,47	22,61	1,14
	422	21/06/00	20,80	21,94	21,56	22,53	0,97

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

	continu	ação R	esultados Te	mperatura n	nédia diár	ia	
Fases	Dias de	DATA		Temperatu	ra (°C)		diferença
	operação		afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB
	423	22/06/00		21,48	20,72	21,34	0,62
	424	23/06/00		21,01	20,42	20,78	0,36
	425	24/06/00		20,95	20,07	20,83	0,76
	426	25/06/00		20,75	19,32	20,43	1,12
	427	26/06/00	16,60	20,55	19,80	21,02	1,22
	428	27/06/00	21,50	21,10	19,71	21,84	2,14
	429	28/06/00	22,50	21,35	20,10	22,08	1,99
	430	29/06/00	18,80	21,20	20,81	21,75	0,94
	431	30/06/00		21,10	20,66	22,02	1,36
	432	01/07/00					
	433	02/07/00					
	434	03/07/00	20,50	21,60	20,76	22,37	1,61
	435	04/07/00	21,30	21,07	20,22	21,04	0,82
	436	05/07/00	17,70	21,17	20,41	20,71	0,30
	437	06/07/00	20,20	21,26	20,59	21,30	0,71
	438	07/07/00		21,04	20,31	21,17	0,86
	439	08/07/00		20,73	19,80	21,44	1,64
	440	09/07/00		20,27	18,54	21,50	2,95
	441	10/07/00	18,40	21,06	19,87	21,54	1,67
	442	11/07/00	21,20	21,70	21,12	22,17	1,05
	443	12/07/00	22,00	22,07	21,48	22,88	1,40
	444	13/07/00	21,20	21,84	21,26	22,01	0,75
	445	14/07/00		21,38	20,82	21,05	0,23
	446	15/07/00		21,31	20,90	21,57	0,67
	447	16/07/00		20,33	20,58	20,25	-0,33
	448	17/07/00	16,90	18,32	16,94	17,56	0,62
	449	18/07/00	19,10	18,48	16,79	17,31	0,51
	450	19/07/00	17,00	19,62	18,88	19,69	0,81
	451	20/07/00		19,69	19,28	20,43	1,15
	452	21/07/00		20,24	19,66	19,41	-0,25
	453	22/07/00		21,03	20,33		
	454	23/07/00		21,30	20,55		
	455	24/07/00	21,90	21,92	21,10		
	456	25/07/00	21,60	21,86	21,25	22,08	0,84
	457	26/07/00	22,00	21,37	20,61	19,74	-0,87
	458	27/07/00	20,00	21,19	19,86		
VIII	459	28/07/00	,	21,68	20,08	22,05	1,97
	460	29/07/00		21,32	19,74	21,69	1,94
	461	30/07/00		21,34	18,55	21,71	3,16
	462	31/07/00	21,00	21,63	18,81	21,23	2,42
	463	01/08/00	20,20	20,82	20,63	, -	,
	464	02/08/00	21,90	20,49	20,25		
	465	03/08/00	19,90	20,70	20,56		
	466	04/08/00	- 7	21,07	20,81		
	467	05/08/00		19,94	19,08		
	468	06/08/00		19,56	18,68		
	469	07/08/00	19,60	20,38	19,62		
	470	08/08/00	22,10	21,06	20,43		
	170	33/33/00	22,10	21,00	20, 13		

UFMG - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos

	continu	ação R	esultados Te	mperatura n	nédia diár	ia	
Fases	Dias de	DATA		Temperatui	a (°C)		diferença
	operação		afl. UASB	efl. UASB	efl. FB	Ambiente	Amb - FB
	471	09/08/00	25,90	21,50	20,95		
	472	10/08/00	21,00	21,55	21,37		
	473	11/08/00		22,27	22,23		
	474	12/08/00		21,30	20,12		
	475	13/08/00		19,45	16,40		
	476	14/08/00	17,60	19,85	18,43		
	477	15/08/00	19,80	20,44	20,10		
	478	16/08/00	20,90	20,90	20,62		
	479	17/08/00	22,10	21,33	21,21		
	480	18/08/00		21,23	21,13		
	481	19/08/00		21,80	21,68		
	482	20/08/00		21,93	21,45		
	483	21/08/00	22,10	21,71	21,12		
	484	22/08/00	21,10	22,07	21,74		
	485	23/08/00	20,90	21,88	21,67		
	486	24/08/00	20,60	22,50	22,38		
	487	25/08/00		23,09	23,06		
	488	26/08/00		23,55	23,62		
	489	27/08/00		24,03	23,48		
	490	28/08/00	24,90	24,01	23,57		
	491	29/08/00	22,10	22,22	22,06		
	492	30/08/00	21,90	22,21	21,34		
	493	31/08/00	22,80	22,27	21,54		

Nota: Medidas de temperatura pontual durante a fase I e para o afluente reator UASB. Medidas de temperatura *on line* para o efluente do reator UASB e filtro Biológico nas demais fases.

		Resultado	os de Alcalir	nidade e Ác	idos Vol	áteis (mg/L)	
Fases	Dias de	DATA	Alo	calinidade		Ácio	los voláteis	
	operação		afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
I	3	29/04/99	127	234	224	126	26	29
	8	04/05/99	125	242	226	127	26	28
	10	06/05/99	129	236	227	127	26	29
	15	11/05/99	170	267	248	113	80	66
	17	13/05/99	185	288	265	187	90	88
	22	18/05/99	143	109	154	151	35	47
	24	20/05/99	154	186	179	126	47	50
	29	25/05/99	137	153	144	154	37	28
	31	27/05/99	160	267	227	93	42	26
	36	01/06/99	163	293	289	147	70	47
	38	03/06/99	168	149	143	132	42	41
	43	08/06/99	153	130	113	54	19	30
	45 50	10/06/99	118	137	118	56	25	20
	52	15/06/99 17/06/99	167 132	212 175	216 163	112 152	61 71	50 54
	57	22/06/99	181	173	65	56	65	56
	59	24/06/99	147	179	149	133	72	44
	64	29/06/99	174	159	120	105	44	51
	66	01/07/99	157	177	140	44	58	49
	71	06/07/99	148	183	164	91	44	19
	73	08/07/99	140	183	160	62	41	31
	78	13/07/99	148	183	174	93	61	28
	80	15/07/99	131	159	146	28	35	26
	85	20/07/99	155	240	207	15	23	12
	87	22/07/99	155	183	192	30	19	
II	92	27/07/99	157	170	185	12	21	
	94	29/07/99	137	181	166	90	70	50
	99	03/08/99	150	192	168	70	20	20
	101	05/08/99	153	201	174	80	60	50
	106	10/08/99	150	190	174	70	20	20
	108	12/08/99	187	168	146	120	50	20
	113	17/08/99	144	190	170	50	20	20
	115	19/08/99	157	192	171	120	30	30
	120	24/08/99	157	218	198	50	40	20
	122	26/08/99	159	222	198	150	110	50
	127	31/08/99	202	202	181	70	50	50
	129	02/09/99	156	217	186	48	22	22
	134	07/09/99	156	199	169	107	12	56
	136	09/09/99	215	204	186	29	41	34
	143	16/09/99	145	219	197	73	85	56 36
	144 148	17/09/99 21/09/99	132 142	195 215	184 180	95 116	61 29	36
	148	21/09/99 23/09/99	138	191	180	116 92	29	24 68
	155	28/09/99	217	230	193	124	44	44

	Continu	ıação	Resultados	de Alcalinio	lade e Á	cidos Volát	eis (mg/L)	
Fases	Dias de	DATA		calinidade			los voláteis	
	operação		afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
III	157	30/09/99	156	224	184	102	36	56
	162	05/10/99	145	246	237	48	32	24
	164	07/10/99	162	193	169	51	32	32
	169	12/10/99	166	201	185	47	44	69
	171	14/10/99	162	195	186	142	37	39
	176	19/10/99	136	228	215	56	54	34
	178	21/10/99	153	184	171	37	27	24
	183	26/10/99	153	202	197	71	47	56
	185	28/10/99	158	210	189	86	37	37
	190	02/11/99	153	197	173	113	56	24
	192	04/11/99	132	219	182	91	37	32
	197	09/11/99	210	252	228	88	56	42
	199	11/11/99	180	210	202	95	64	56
	204	16/11/99	140	182	145	91	59	44
	206	18/11/99	171	228	189	88	39	42
	211	23/11/99	160	197	215	81	32	42
IV	213	25/11/99	151	224	186	34	37	32
	218	30/11/99	162	171	167	29	27	24
	220	02/12/99	123	191	160	76	22	34
	225	07/12/99	127	158	147	59	54	34
	227	09/12/99	125	147	138	113	100	100
	232	14/12/99	162	224	199	83	44	32
	234	16/12/99	151	197	197	135	54	59
	239	21/12/99	139	181	173	51	37	44
	241	23/12/99	164	225	200	78	49	56
	253	04/01/00	228	169	150	51	47	47
	255	06/01/00	153	205	189	100	40	42
\mathbf{V}	297	17/02/00	164	187	205	91	40	47
	302	22/02/00	132	287	236	79	74	58
	304	24/02/00	173	162	182	193	58	30
	309	29/02/00	148	207	207	140	70	79
	311	02/03/00	146	182	180	163	86	114
	318	09/03/00	119	196	178	147	142	121
	323	14/03/00	148	155	149	116	23	51
	325	16/03/00	176	226	214	70	65	61
	330	21/03/00	160	251	220	121	86	83
	332	23/03/00	155	228	230	190	119	121
	337	28/03/00	158	176	150	33	35	23
	339	30/03/00	150	209	195	58	109	47
	344	04/04/00	145	185	167	61	42	44
VI	346	06/04/00	147	189	200	91	49	58
	351	11/04/00	146	191	175	144	70	61
	353	13/04/00	135	168	129	42	40	35
	358	18/04/00	182	312	290	128	184	175
	365	25/04/00	157	164	146	51	54	50

	Continu	ıação	Resultados o	le Alcalinio	lade e Á	cidos Voláto	eis (mg/L)	
Fases	Dias de	DATA	Alc	calinidade		Ácio	los voláteis	
	operação		afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
	367	27/04/00	173	184	184	57	27	36
	372	02/05/00	142	164	151	64	55	46
	374	04/05/00	193	211	188	57	34	57
	379	09/05/00	177	239	206	96	36	27
	381	11/05/00	168	226	215	87	36	25
	386	16/05/00	199	244	253	156	110	60
	388	18/05/00	164	197	191	126	48	89
	393	23/05/00	162	182	195	78	21	25
	395	25/05/00	166	213	203	105	57	70
	400	30/05/00	177	228	220	174	99	89
	402	01/06/00	191	202	202	118	47	49
	407	06/06/00	173	193	195	92	37	41
	409	08/06/00	175	186	177	85	34	37
	414	13/06/00	173	186	184	141	93	75
VII	421	20/06/00	159	190	177	46	18	30
	428	27/06/00	194	216	212	35	12	13
	430	29/06/00	196	216	202	87	76	13
	435	04/07/00	216	245	233	102	32	17
	437	06/07/00	214	210	204	24	18	18
	442	11/07/00	214	335	341	65	47	20
	444	13/07/00	169	214	218	78	20	23
	449	18/07/00	169	214	216	73	24	23
	451	20/07/00	196	233	237	182	22	37
	456	25/07/00	192	228	226	98	17	17
	458	27/07/00	224	202	188	114	24	19
VIII	463	01/08/00	212	218	186	81	18	20
	465	03/08/00	220	228	220	96	49	28
	470	08/08/00	212	241	231	107	37	17
	472	10/08/00	212	249	243	71	31	16
	479	17/08/00	196	214	204	87	23	18
	484	22/08/00	206	204	228	87	24	17
	486	24/08/00	202	231	226	82	27	12
	491	29/08/00	192	214	204	30	23	24
	493	31/08/00	190	249	237	30	21	16

	Resu	ltados de	NTK (mg	g/L)				Resul	tados de	Nitrato (n	ng/L)	
Fases	Dias de	Data da	NTK	(mg/L)		Fas	ses	Dias de	Data da	Nitrat	o (mg/L)	
	operação	o coleta	afl. UASB efl.	UASB	efl. FB			operaçã	o coleta	afl. UASB ef	l. UASB 6	efl. FB
Ι	8	04/05/99	37,44	55,85	56,47]	I	1	27/04/99	< 0,1	< 0,1	0,3
	15	11/05/99		56,47	54,01			10	06/05/99		0,1	0,7
	29	25/05/99		34,98	32,53			15	11/05/99		< 0,1	0,6
	36	01/06/99		55,24	50,94			22	18/05/99		0,1	1,6
	50	15/06/99	39,28		43,58			29	25/05/99	< 0,1	< 0,1	2,0
	57	22/06/99			27,01			31	27/05/99		0,1	2,0
	71	06/07/99			39,89			36	01/06/99		0,1	1,2
	78	13/07/99			37,44			43	08/06/99		< 0,1	0,4
	85	20/07/99			36,21			50	15/06/99		0,1	0,9
II	92	27/07/99	30,87		33,20			52	17/06/99		< 0,1	0,2
	99	03/08/99			34,98			57	22/06/99	0.4	0,1	1,0
	106	10/08/99			28,54			64	29/06/99	0,1	0,1	2,2
	113	17/08/99			37,27			66	01/07/99		< 0,1	2,0
	120	24/08/99	40.10		44,69			71	06/07/99		0,1	8,7
	127	31/08/99	40,19	,	36,69			74 80	09/07/99		0,4	7,3
	134 144	07/09/99 17/09/99			34,47 30,64			80 87	15/07/99 22/07/99		0,4 0,2	9,6 9,6
	144	21/09/99			37,03	I	T	92	27/07/99	0,1	0,2	5,6
III	155	28/09/99	35,11		35,75	1	ı	92 99	03/08/99	0,1	0,1	7,6
111	162	05/10/99	33,11		60,65			106	10/08/99		0,1	13,5
	169	12/10/99			50,43			113	17/08/99		0,1	7,5
	176	19/10/99			41,50			120	24/08/99		0,1	9,4
	183	26/10/99	40,22		41,50			127	31/08/99	0,3	0,3	9,4
	190	02/11/99	. 0,22		42,96			134	07/09/99	0,0	0,1	10,0
	197	09/11/99			44,05			144	17/09/99		< 0,1	19,0
	204	16/11/99			28,23			148	21/09/99		0,2	6,5
IV	211	23/11/99			40,77		II	155	28/09/99	0,4	< 0,1	5,7
	218	30/11/99	37,27	36,11	34,94			162	05/10/99		0,2	13,0
	225	07/12/99		40,22	29,37			169	12/10/99		0,4	5,2
	232	14/12/99		42,13	30,64			183	26/10/99	0,3	0,4	5,8
	239	21/12/99		50,43	49,80			190	02/11/99		0,1	5,2
	253	04/01/00	36,39	45,33	43,41			192	04/11/99		0,1	10,1
V	295	15/02/00		45,96	44,05			204	16/11/99		0,3	10,0
	302	22/02/00			45,96	Γ	V	211	23/11/99		0,3	7,0
	309	29/02/00	30,64		37,67			218	30/11/99	0,3	0,3	5,3
	316	07/03/00			22,34			225	07/12/99		0,3	6,4
	323	14/03/00			21,39			232	14/12/99		0,4	4,1
	330	21/03/00			45,30			253	04/01/00	1,4	0,9	6,8
	337	28/03/00	37,35		29,05	7	V	297	17/02/00	0,8	1,0	1,0
VI	344	04/04/00			43,43			304	24/02/00		0,4	0,6
	351	11/04/00			39,09			309	29/02/00	0.4	1,2	3,3
	358	18/04/00			60,81			311	02/03/00	< 0,1	0,2	0,6
	365	25/04/00			34,75			318	09/03/00	1,1	2,0	1,0
	372	02/05/00			20,48			325	16/03/00	1,0	0,9	1,1
	379 386	09/05/00	36.00		35,37 51.50			332	23/03/00	0.7	0,4	0,7
	386	16/05/00	36,00		51,50		7 T	337	28/03/00	0,7	1,2	1,8
	393	23/05/00	35,00	34,13	34,75	V	/ I	346	06/04/00		0,5	2,2

conti	nuação	Result	ados de Nī	Г К (m	g/L)
Fases	Dias de	Data da	NTK	(mg/L)	
	operação	coleta	afl. UASB efl.	UASB	efl. FB
	400	30/05/00	42,84	40,33	33,51
	407	06/06/00		32,56	30,27
	414	13/06/00	31,00	35,99	35,41
VII	421	20/06/00		34,56	28,85
	428	27/06/00	35,70	37,98	41,98
	435	04/07/00	51,00	45,70	46,84
	442	11/07/00	37,00	58,83	57,69
	449	18/07/00	46,00	45,12	40,56
	456	25/07/00	39,41	41,13	38,27
VIII	463	01/08/00	40,57	37,63	35,87
	470	08/08/00	42,11	42,11	37,95
	484	22/08/00	37,63	34,69	33,52
	491	29/08/00	38,22	31,16	35,87

contin	uação	Resulta	dos de N	litrato (n	ng/L)
Fases	Dias de	Data da	Nit	rato (mg/L)	
	operação	coleta	afl. UASB	efl. UASB	efl. FB
	353	13/04/00		0,2	3,5
	358	18/04/00		0,5	2,7
	367	27/04/00	0,3	0,4	0,9
	374	04/05/00		0,2	0,6
	381	11/05/00		0,2	0,6
	388	18/05/00		0,8	1,2
	395	25/05/00		0,5	0,8
	402	01/06/00	0,1	0,2	0,4
VII	421	20/06/00	0,6	0,6	1,5
	430	29/06/00	0,7	0,5	1,2
	437	06/07/00	0,6	0,7	1,0
	444	13/07/00		0,5	0,7
	451	20/07/00		0,5	0,9
	458	27/07/00	0,3	0,4	0,5
VIII	463	01/08/00		0,3	1,2
	472	10/08/00		0,6	0,8
	480	18/08/00		0,5	0,4
	487	25/08/00	0,3	0,3	0,4
	493	31/08/00	1,3	0,4	0,9

			Resultad	os de Fósfoi	o (mg/L)		
Fases	Dias de	Data da	Fá	sforo total		Fós	foro solúvel	
	operação	coleta	afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
I	1	27/04/99	2,47	6,4	6,14	-	-	_
	31	27/05/99	3,78	4,18	3,32	-	-	-
	64	29/06/99	4,62	5,18	4,67	-	-	-
II	92	27/07/99	3,56	3,22	3,45	-	-	-
	127	31/08/99	6,23	6,59	5,86	-	-	_
III	155	28/09/99	4,73	5,49	4,09	-	-	_
	183	26/10/99	1,96	2,39	1,97	1,39	2,11	1,81
IV	218	30/11/99	3,49	4,23	4,54	2,77	4,11	4,00
	253	04/01/00	6,74	7,09	7,14	4,99	5,42	5,86
V	311	02/03/00	2,43	2,38	2,31	2,29	2,12	1,89
	337	28/03/00	2,92	3,54	3,22	2,35	2,79	2,68
VI	367	27/04/00	1,89	3,19	2,62	1,72	2,85	2,58
	400	30/05/00	3,53	2,63	2,34	2,64	2,37	2,06
VII	428	27/06/00	2,76	2,89	2,48	2,15	2,27	2,13
	458	27/07/00	5,81	4,83	5,48	5,18	4,25	4,86
VIII	463	18/08/00	4,17	3,99	3,92	3,41	3,06	3,10
	491	29/08/00	3,94	4,25	3,79	2,91	2,67	2,31

		Res	sultados de o	quantificaç	ão de Co	liformes		
Fases	Dias de	DATA	CT (N	MP/100 mL)		E. coli	(NMP/100 ml	L)
	operação	_	afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB
VI	365	27/04/00	4,8E+09	2,9E+08	7,5E+07	1,4E+09	7,8E+07	2,2E+07
	372	02/05/00	6,9E+09	5,0E+07	1,7E+07	9,1E+08	1,2E+07	4,1E+06
	372	04/05/00	2,0E+09	5,7E+08	3,1E+07	1,3E+08	1,8E+08	3,1E+06
	379	09/05/00	4,8E+09	1,2E+08	7,9E+07	1,0E+09	4,5E+07	2,1E+07
	379	11/05/00	4,8E+08	3,3E+08	1,8E+08	2,3E+08	1,0E+08	2,9E+07
	386	16/05/00	2,6E+09	1,5E+07	1,4E+07	1,2E+08	4,1E+06	1,0E+06
	386	18/05/00	1,2E+10	3,8E+08	3,1E+07	1,6E+09	5,0E+07	9,4E+06
	393	23/05/00	7,7E+09	1,6E+08	3,7E+08	5,0E+08	1,9E+07	7,0E+07
	393	25/05/00	4,1E+07	2,2E+07	5,2E+06	1,0E+07	5,1E+06	1,0E+06
	400	30/05/00	2,2E+09	4,6E+08	7,0E+07	1,6E+08	1,1E+08	1,6E+07
	400	01/06/00	7,7E+09	6,6E+07	1,3E+08	2,3E+09	2,6E+07	3,6E+07
	407	06/06/00	2,6E+09	3,5E+07	5,6E+07	7,9E+08	9,8E+07	3,8E+07
	407	08/06/00	1,2E+09	1,6E+07	2,2E+07	1,2E+08	2,0E+06	5,2E+06
VII	430	29/06/00	8,2E+09	1,2E+07	3,3E+07	2,5E+09	4,1E+06	1,2E+07
	435	04/07/00	1,1E+09	7,1E+07	1,2E+08	3,0E+08	3,0E+07	4,0E+07
	437	06/07/00	5,2E+09	1,1E+08	3,1E+08	3,1E+08	2,5E+07	7,0E+07
	442	11/07/00	3,3E+09	3,7E+08	1,0E+08	7,9E+08	8,4E+07	3,1E+07
	444	13/07/00	4,9E+09	4,1E+08	4,6E+08	1,3E+09	1,7E+08	1,3E+08
	449	18/07/00	8,7E+09	4,1E+08	2,6E+08	1,0E+09	1,3E+08	1,1E+08
	451	20/07/00	3,9E+09	9,2E+08	2,1E+08	5,7E+08	2,0E+08	7,2E+07
	456	25/07/00	2,8E+09	3,1E+08	1,2E+08	3,4E+08	3,4E+07	2,5E+07
	458	27/07/00	1,2E+10	1,4E+08	1,9E+08	1,4E+09	1,2E+07	1,6E+07
VIII	463	01/08/00	8,2E+09	9,9E+07	7,4E+07	1,4E+09	1,2E+07	8,5E+06
	465	03/08/00	1,0E+10	5,8E+08	4,7E+07	2,2E+09	1,2E+08	1,7E+07
	470	08/08/00	7,7E+09	5,2E+08	1,0E+08	3,1E+08	1,2E+08	1,6E+07
	472	10/08/00	3,9E+09	2,2E+08	2,9E+08	6,7E+08	4,0E+07	7,0E+07
	479	17/08/00	7,3E+09	9,3E+07	4,1E+08	8,2E+08	3,1E+07	1,3E+08
	484	22/08/00	3,3E+09	3,9E+08	1,7E+08	2,2E+08	1,5E+08	4,3E+07
	486	24/08/00	3,2E+09	2,8E+08	4,4E+07	2,9E+08	6,4E+07	2,5E+07
	491	29/08/00	2,1E+09	7,3E+08	2,9E+08	3,8E+08	2,5E+08	8,1E+07
	493	31/08/00	1,4E+09	3,9E+08	1,9E+07	2,8E+08	1,4E+08	3,1E+06

		Resu	ltados de Ovos	de Helminto	S	
Fases	Dias de	DATA _	ovos he	lmintos/litro		viabilidade (%)
	operação		afl. UASB	efl. UASB	efl. FB	efl. FB
VI	388	18/05/00	20,00	4,00	1,34	33
	402	01/06/00	0,00	5,00	0,00	0
VII	430	29/06/00	13,00	0,00	0,00	0
	458	27/07/00	10,00	1,32	0,99	66
VIII	465	03/08/00	20,00	2,50	5,30	-
	472	10/08/00	5,00	8,00	1,50	0
	479	17/08/00	0,00	4,00	0,99	-
	493	31/08/00	7,70	1,33	0,50	-

	Resumo dos resultados de quantificação de Coliformes										
Fases	3	C'	T (NMP/100	mL)	Е. с	coli (NMP/100	0 mL)				
		afl. UASB	efl. UASB	efl. FB	afl. UASB	efl. UASB	efl. FB				
VI	média	2,4E+09	1,0E+08	4,7E+07	3,5E+08	2,9E+07	1,0E+07				
	máximo	1,2E+10	5,7E+08	3,7E+08	2,3E+09	1,8E+08	7,0E+07				
	mínimo	4,1E+07	1,5E+07	5,2E+06	1,0E+07	2,0E+06	1,0E+06				
	desvio padrão	3,5E+09	1,9E+08	1,0E+08	7,1E+08	5,4E+07	2,0E+07				
	coeficiente variação	1,47	1,89	2,13	2,01	1,89	1,96				
	n	13,0	13,0	13,0	13,0	13,0	13,0				
	eficiência por unidade (%)		96	54		92	64				
	eficiência global (%)			98			97				
VII	média	4,6E+09	1,8E+08	1,6E+08	7,4E+08	4,3E+07	4,2E+07				
	máximo	1,2E+10	9,2E+08	4,6E+08	2,5E+09	2,0E+08	1,3E+08				
	mínimo	1,1E+09	1,2E+07	3,3E+07	3,0E+08	4,1E+06	1,2E+07				
	desvio padrão	3,4E+09	2,8E+08	1,3E+08	7,2E+08	7,3E+07	4,2E+07				
	coeficiente variação	0,75	1,51	0,81	0,97	1,72	1,00				
	n	9,0	9,0	9,0	9,0	9,0	9,0				
	eficiência por unidade (%)		96	12		94	1				
	eficiência global (%)			96			94				
VIII	média	4,4E+09	3,0E+08	1,1E+08	5,3E+08	7,5E+07	2,6E+07				
	máximo	1,0E+10	7,3E+08	4,1E+08	2,2E+09	2,5E+08	1,3E+08				
	mínimo	1,4E+09	9,3E+07	1,9E+07	2,2E+08	1,2E+07	3,1E+06				
	desvio padrão	3,1E+09	2,2E+08	1,4E+08	6,7E+08	7,5E+07	4,2E+07				
	coeficiente variação	0,71	0,73	1,31	1,25	1,00	1,62				
	n	9,0	9,0	9,0	9,0	9,0	9,0				
	eficiência por unidade (%)		93	64		86	65				
	eficiência global (%)			98			95				

Resumo dos resultados de Ovos de Helmintos					
Fases		ovos helmintos/litro			
		afl. UASB	efl. UASB	efl. FB	
VI	média	10,0	4,5	0,7	
	máximo	20,0	5,0	1,3	
	mínimo	0,0	4,0	0,0	
	desvio padrão	14,1	0,7	0,9	
	eficiência por unidade (%)		55,0	85,1	
	eficiência global (%)			93,3	
VII	média	11,5	0,7	0,5	
	máximo	13,0	1,3	1,0	
	mínimo	10,0	0,0	0,0	
	desvio padrão	2,1	0,9	0,7	
	eficiência por unidade (%)		94,3	25,0	
	eficiência global (%)			95,7	
VIII	média	8,2	4,0	2,1	
	máximo	20,0	8,0	5,3	
	mínimo	0,0	1,3	0,5	
	desvio padrão	8,5	2,9	2,2	
	eficiência por unidade (%)		51,6	47,6	
	eficiência global (%)			74,6	

	Vazâ	ío de Bioga	ás
Fases	Dias de	DATA	VAZÃO
	operação		(L/h)
I	1	27/04/99	-
	3	29/04/99	3,85
	7	03/05/99	3,63
	8	04/05/99	3,60
	10	06/05/99	3,63
	15	11/05/99	3,45
	22	18/05/99	2,44
	24	20/05/99	3,81
	29	25/05/99	2,96
	31	27/05/99	5,43
	36	01/06/99	4,23
	38	03/06/99	2,98
	43	08/06/99	3,35
	45	10/06/99	3,10
	56	21/06/99	2,35
	57	22/06/99	4,02
	58	23/06/99	4,12
	59	24/06/99	4,09
	63	28/06/99	3,43
	64	29/06/99	3,63
	65	30/06/99	2,03
	66	01/07/99	1,07
	70	05/07/99	3,40
	71	06/07/99	4,72
	72	07/07/99	4,16
	73	08/07/99	5,42
	73 77	12/07/99	4,83
	78	13/07/99	
	78 79		4,26
		14/07/99	5,55
	80	15/07/99	5,36
	84	19/07/99	4,25
	85	20/07/99	5,08
TT	86	21/07/99	2,72
II	87	22/07/99	2,79
	91	26/07/99	1,23
	93	28/07/99	6,17
	94	29/07/99	6,88
	98	02/08/99	5,75
	99	03/08/99	5,33
	100	04/08/99	4,42
	101	05/08/99	3,67
	105	09/08/99	3,75
	106	10/08/99	3,50
	107	11/08/99	4,58

co	ntinuação	Vazão d	le Biogás
Fases	Dias de	DATA	VAZÃO
	operação		(L/h)
	211	23/11/99	6,63
	212	24/11/99	9,83
IV	213	25/11/99	3,21
	217	29/11/99	2,25
	218	30/11/99	7,83
	219	01/12/99	9,58
	220	02/12/99	10,54
	224	06/12/99	9,25
	225	07/12/99	5,38
	226	08/12/99	9,33
	227	09/12/99	5,25
	231	13/12/99	7,17
	232	14/12/99	6,42
	233	15/12/99	8,63
	234	16/12/99	9,00
	238	20/12/99	2,26
	240	22/12/99	5,33
	241	23/12/99	9,21
	245	27/12/99	4,28
	246	28/12/99	1,29
	253	04/01/00	1,29
	255	06/01/00	6,29
	259	10/01/00	1,08
\mathbf{V}	296	16/02/00	2,58
	297	17/02/00	3,46
	302	22/02/00	2,49
	303	23/02/00	4,75
	304	24/02/00	5,38
	308	28/02/00	4,29
	309	29/02/00	4,96
	310 311	01/03/00 02/03/00	6,42 6,67
	311	06/03/00	6,60
	316	07/03/00	6,58
	317	08/03/00	6,00
	318	09/03/00	3,58
	322	13/03/00	2,59
	323	14/03/00	3,21
	324	15/03/00	2,88
	325	16/03/00	3,13
	329	20/03/00	2,94
	330	21/03/00	4,04
	331	22/03/00	5,29
	332	23/03/00	7,50

cont	tinuação	Vazão de Biogás	
Fases	Dias	DATA	VAZÃO
	operação		(L/h)
	448	17/07/00	10,07
	449	18/07/00	4,25
	450	19/07/00	9,08
	451	20/07/00	4,00
	455	24/07/00	6,46
VIII	456	25/07/00	7,71
	457	26/07/00	7,67
	458	27/07/00	5,50
	462	31/07/00	8,41
	463	01/08/00	8,21
	464	02/08/00	9,71
	465	03/08/00	8,29
	469	07/08/00	8,28
	470	08/08/00	6,75
	471	09/08/00	10,17
	472	10/08/00	9,75
	476	14/08/00	7,52
	477	15/08/00	5,33
	478	16/08/00	9,88
	479	17/08/00	11,88
	483	21/08/00	6,82
	484	22/08/00	6,00
	485	23/08/00	6,67
	486	24/08/00	8,42
	490	28/08/00	4,31
	491	29/08/00	5,38
	492	30/08/00	5,54
	493	31/08/00	9,88

	resumo vazão de Bi	ogás
Fases		vazão (L/h)
I	média	3,78
	máximo	5,55
	mínimo	1,07
	desvio padrão	1,04
	coeficiente de variação	0,28
	n	32
II	média	3,39
	máximo	8,00
	mínimo	1,14
	desvio padrão	1,91
	coeficiente de variação	0,56
	n	30
III	média	7,26
	máximo	12,38
	mínimo	1,21
	desvio padrão	2,35
	coeficiente de variação	0,32
	n	29
IV	média	5,95
	máximo	10,54
	mínimo	1,08
	desvio padrão	3,12
	coeficiente de variação	0,53
	n	21
V	média	4,36
	máximo	7,50
	mínimo	2,46
	desvio padrão	1,61
	coeficiente de variação	0,37
	n	24
VI	média	6,23
	máximo	12,29
	mínimo	2,21
	desvio padrão	2,69
	coeficiente de variação	0,43
	n	27
VII	média	7,20
	máximo	10,07
	mínimo	3,83
	desvio padrão	2,18
	coeficiente de variação	0,30
	n	19

resumo vazão de Biogás				
Fases		Vazão (L/h)		
VIII	média	7,74		
	máximo	11,88		
	mínimo	4,31		
	desvio padrão	1,92		
	coeficiente de variação	0,25		
-	n	23		
	média	5,61		
Global	máximo	12,38		
	mínimo	1,07		
	desvio padrão	2,65		
	coeficiente de variação	0,47		
	n	205		

Teor de Metano no Biogás				
Fases	Dias de	DATA	CH ₄	
	operação		(%)	
I	37	02/06/99	81,53	
	44	09/06/99	82,40	
	50	15/06/99	70,82	
	64	29/06/99	70,41	
	78	13/07/99	68,89	
II	92	27/07/99	73,24	
	108	12/08/99	74,26	
	122	26/08/99	75,44	
	135	08/09/99	73,78	
	149	22/09/99	74,40	
III	176	19/10/99	72,73	
	185	28/10/99	70,18	
	204	16/11/99	65,92	
IV	218	30/11/99	78,92	
	232	14/12/99	71,21	

média global = 73,61%